# Knowledge Rich Curriculum Plan 

Year 10 Foundation - Geometry 2

| Lesson Objective | Intended Knowledge: <br> Students will know that... | Tiered Vocabulary | Prior Knowledge: <br> In order to know this, students need to already know that... | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| To learn how to calculate perimeter | - Students will know how to calculate the perimeter of compound shapes. <br> - Students will know how to use inverse operations to find the missing lengths of shapes when given the perimeter. <br> - Students will know how to solve real life problems involving perimeter. <br> - Students will know how to solve more complex problems involving perimeter <br> BASIC SHAPES? | Perimeter - the distance around the outside of a shape | - Students should already know how to name different 2D shapes <br> - Students should know how to find the perimeter of basic shapes |  |
| To learn how to calculate area | - Students will know how to calculate the area of rectangles, squares, parallelograms and triangles <br> - Students will know how to calculate the area of compound shapes involving rectangles, squares, parallelograms and triangles | Area - the amount of space inside a 2D shape <br> Quadrilateral - a four-sided shape | - Students need to know how to recognise different quadrilaterals |  |
| To learn how to calculate the area of a trapezium | - Students will know that the formula for the area of a trapezium is $\frac{1}{2}(a+b) h$ where $a$ and $b$ are the parallel sides and $h$ is the height of the trapezium <br> - Students will know how to calculate the area of a trapezium <br> - Students will know how to calculate the area of compound shapes involving trapezia <br> - Students will know how to solve worded problems involving the area of a trapezium <br> - Students will know how to work backwards to find missing lengths given the area of a trapezium | Trapezium - a quadrilateral with one pair of sides parallel. | - Students need to know how to calculate the area of squares, rectangles, triangles and parallelograms |  |
| To learn how to calculate the area of compound shapes | - Students will know how to calculate the area of a compound shapes, by separating and calculating the areas of the more basic shapes. | Compound - a thing that is composed of two or more separate elements. | - Students need to be able to use basic mathematical operations such as addition, subtracting, multiplication and division. <br> - Students need to be able to solve basic equations. <br> - Students need to be able to find the area of rectangles, parallelograms and triangles. |  |
| To learn how to calculate circumference | - Students will know how to calculate the circumference of a circle using the formula - $\pi d$, giving their answer to a suitable degree of accuracy <br> - Students will know how to calculate the arc length and perimeter of a semi-circle <br> - Students will know how to calculate the arc length and perimeter of quarter circles or three quarters of a circle <br> - Students will know how to use inverse operations to find the missing radius or diameter when given the circumference. <br> - Students will know how to solve problems involving area and circumference of circles. | Circumference - the perimeter of a circle Arc - a part of a curve, a part of the circumference of a circle Radius - a straight line from the centre to the circumference of a circle or sphere Diameter - a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere | - Students need to know how to identify the different parts of a circle |  |

Prior Knowledge:
In order to know this, students need to already
know that...

- Students need to know how to identify the
different parts of a circle

To learn how to calculate missing sides and angles in right angled triangles using trigonometry

## missing sides using

 Pythagoras' Theorem- Students will know how to calculate the area of a circle using the formula $\pi r^{2}$
- Students will know how to calculate the area of a circle using the formula $\pi r^{2}$, without a calculator leaving answers in terms of $\pi$.
- Students will know how to calculate the area of semi circles, quarter circles or three-quarters of a circle
- Students will know how to use inverse operations to find the missing radius or diameter when given the area.
- Students will know how to solve problems involving the area of circles.
- Students will know how to calculate the area of compound shapes involving circles or parts of circles
- Students will know how to find missing lengths in a right-angled triangle using Pythagoras' theorem
- Students will know that to prove a triangle is right angled using Pythagoras' theorem they will substitute the values into the formula.
- Students will know how to solve worded problems using Pythagoras' theorem
- Students will know how to solve worded problems using Pythagoras' theorem
- Students will know how to solve problems involving multiple right-angled triangles using Pythagoras' theorem
- Students will know that Sin $=\frac{\text { Opposite }}{\text { Hypotenuse }}$
- Students will know that $\operatorname{Cos}=\frac{\text { Adjacent }}{\text { Hypotenuse }}$
- Students will know that Tan $=\frac{\text { opposite }}{\text { Adjacent }}$
- Students will know how to use the formula triangles for SOHCAHTOA to find missing sides. - Students will know how to calculate missing sides in right angled triangles using SOHCAHTOA

Hypotenuse - the longest side in a right-
angled triangle. It can always be found opposite the right angle
Theorem - a statement that has been proved, or can be proved
$+$
proved, or can be proved

Trigonometry - a branch of mathematics that studies relationships between side lengths and angles of triangles Hypotenuse - the longest side in a rightangled triangle. It can always be found opposite the right angle
Adjacent - next to, in maths the adjacent side in a right-angled triangle is the side that is adjacent to the angle, forming the angle with the hypotenuse
Opposite - for right angled triangles the opposite is the side opposite the angle that we know or are trying to find.

- Students will know how to calculate missing angles in right angled triangles using SOHCAHTOA
- Students will know how to solve worded problems involving SOHCAHTOA
- Students will know how to solve multi-step problems involving more than one right-angled
triangle using SOHCAHTOA.

