Knowledge Rich Curriculum Plan Year 10 Foundation – Geometry 2 | Lesson | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | The Sutton Academy Steps to Success: | Feedback | |---------------------------------------|--|---|---|---|----------| | To learn how to | Students will know how to convert units for length including mm, cm, | Convert – change a value from | Students need to know how | Key conversions: | recubuck | | convert metric | m. km. | one form to another | to multiply and divide by | Length: | | | units for | • Students will know how to convert units for mass including mg, g, kg, | Metric –A system of | powers of 10. | • $1cm = 10mm$ | | | measures. | tonnes. | measurement that uses the | | • $1m = 100cm$ | | | | Students will know how to convert units for volume including ml, cl, l. | meter, litre, and gram as base | | $\bullet 1km = 1000m$ | | | | Students will know how to make simple conversions between units of | units of length, volume and | | Mass: | | | | length including mm, cm, m, km. | mass | | $\bullet \qquad 1g = 1000mg$ | | | | • Students will know how to make simple conversions between units of | Volume – the amount of space | | $\bullet \qquad 1kg = 1000g$ | | | | mass including mg, g, kg, tonnes. | inside a 3D object | | • $1tonne = 1000kg$ | | | | • Students will know how to make simple conversions between units of | Mass – the weight of an object | | Volume: | | | | volume including ml, cl, l. | Vocabulary may be split up | | • $1ml = 10cl$ | | | | Students will know how to make multi-step conversions between | into the sections of the lesson. | | • $1 litre = 1000 ml$ | | | | different units of length, mass and volume. E.g. mm to m etc. | | | | | | | • Students will know how to make conversions between squared units. | | | | | | | E.g. cm^2 to m^2 | | | | | | | Opportunity for challenge: | | | | | | | Students will know how to make conversions between cubic units. | | | | | | | E.g. cm^3 to m^3 | | | | | | To learn how to | • Students will know how to calculate the perimeter of rectangles, | Perimeter – the distance | Students need to identify | Steps to Success – Perimeter | | | calculate the | triangles, trapezia and parallelograms. | around the outside of a shape | and recall properties of | To calculate the perimeter, add the length of all of the sides together. | | | perimeter of 2D | • Students will know how to calculate the perimeter of special triangles. | Compound shape – a shape | regular and irregular 2D | Remember even if there are only two measurements on the shape if it | | | shapes. | Students will know how to calculate the perimeter of compound | made up of two or more | shapes. | has 4 sides you will need to add 4 numbers. | | | | shapes. | geometric shapes | | Steps to Success – Perimeter of compound shapes | | | | • Students will know that the units used to represent perimeter are mm, | | | Step 1: Firstly, identify whether you need to find any missing lengths, if | | | | cm and m etc. | | | it is necessary subtract the smaller length from the larger parallel length. | | | | Students will know how to use inverse operations to find the missing | | | Step 2: Add up the lengths of all the sides. | | | | lengths of shapes when given the perimeter. | | | Step 3: Don't forget to write your units – cm or mm or m. | | | | Students will know how to solve real life problems involving perimeter. | | | | | | To learn how to
calculate the area | • Students will know that the units used to represent area are mm^2 , | Area – the amount of space | Students need to know how | Key formulae: | | | of rectangles, | cm^2 and m^2 etc. | inside a 2D shape Parallelogram – a four-sided | to multiply integers and decimals. | Rectangles: $Area = length \times width$ | | | parallelograms | • Students will know how to calculate the area rectangles. | shape with two pairs of parallel | Students need to know how | $Area = tength \times wtath$ | | | and triangles. | • Students will know how to calculate area of a parallelogram. | opposite sides. | to identify rectangles, | Parallelograms: | | | | • Students will know that the base and height are perpendicular to each | Perpendicular - at an angle of | parallelograms and triangles. | $Area = base \times height$ | | | | other in every parallelogram. | 90 degrees. | parallelogranis and thangles. | The Subsection States | | | | • Students will know how to calculate the area of a triangle. | 35 468.668. | | Triangles: | | | | • Students will know that the base and height are perpendicular to each other in every triangle. | | | $Area = \frac{1}{2} \times base \times height$ | | | | , 3 | | | | | | | Students will know to ignore any additional lengths in the rectangles,
parallelograms and triangles. | | | | | | | Students will know how to use inverse operations to find the missing | | | | | | | lengths of shapes when given the area. | | | | | | | Students will know how to solve real life problems involving area. | | | | | | | Students will know now to solve real life problems involving area. | | | | | | Lesson | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |--|--|--|--|--|----------| | To learn how to calculate the area of compound shapes. | Students will know how to calculate the area of a compound shapes, by separating and calculating the areas of the more basic shapes. Students will know how to calculate the area of compound shapes, by separating them into rectangles or triangle and finding the sum of the areas of each individual shape. Students will know how to use inverse operations to find the missing sides of a compound shape. Opportunity for challenge: Students will know how to solve problems involving the area of compound shapes. | Compound shape — a shape made up of two or more geometric shapes Inverse — opposite of | Students need to know how to find the area of rectangles and triangles. | Steps to Success – Area of compound shapes Step 1: Firstly, identify whether or not you need to find any missing lengths, if it is necessary subtract the smaller length from the larger length. Step 2: Divide the compound shape into smaller shapes, and calculate the area of each individual shape. Step 3: To find the total area of the compound shape, add the area of the individual shapes together. Step 4: Don't forget to write your units - cm² or mm²or m². Key formulae: Rectangles: Area = length × width Triangles: Area = ½ × base × height | recusous | | To learn how find
the area of
trapezia. | Students will know how to identify the parallel lines in a trapezium. Students will know how to calculate the area of a trapezium using the formula A = ½ (a + b) h, where a and b are the parallel sides of the trapezium. Students will know how to use inverse operations to find the height or missing side of a trapezium. Opportunity for challenge: Students will know how to solve problems involving the area of trapezia. | Trapezium — a quadrilateral with one pair of sides parallel. Parallel — two lines that are the same distance apart and never touch Formula sheet | Students need to know how
to substitute into
expressions/formulae. | Steps to Success – Area of trapezia ½(a+b)h Step 1: Label your trapezium, a and b are the parallel lengths of your trapezium and h is the perpendicular height. Step 2: Substitute a, b and h into the formula ½(a + b)h. Step 3: Calculate using BIDMAS. Step 4: Don't forget to write your units - cm² or mm² or m². To calculate the missing sides of a trapezia, the inverse operations of ½(a + b)h will be used. Key formulae: Trapezia: Area = ½(a + b)h | | | To learn how to find the circumference of a circle. | Students will know how to calculate the circumference of a circle using the formula C = πd, where d is the diameter. Students will know how to find the circumference of a circle where only the radius is known. Students will know how to find the circumference of a circle in terms of π. Students will know how to calculate the arc length of a semi-circle. Students will know how to calculate the perimeter of a semi-circle. Students will know how to calculate the arc length of a quarter circle. Students will know how to calculate the perimeter of a quarter circle. Students will know how to calculate the arc length of a three-quarter circle. Students will know how to calculate the perimeter of a three-quarter circle. Students will know how to calculate the perimeter of a three-quarter circle. Students will know how to calculate the perimeter of a three-quarter circle. Students will know how to solve problems involving the circumference of circles. | Circumference – the perimeter of a circle Arc – a part of a curve, a part of the circumference of a circle Radius – a straight line from the centre to the circumference of a circle or sphere Diameter – a straight line passing from side to side through the centre of a circle or sphere Formula sheet | Students need to know how to round to a given decimal place or significant figure. Students need to know how to identify the parts of a circle. | Steps to Success: Circumference of a circle Step 1: Find the diameter of your circle, if you are given the radius, double it to find the diameter. Step 2: Substitute your diameter into the formula $-C = \pi x d$ Step 3: Type your calculation in the calculator. Step 4: Write your answer from the calculator and round to an appropriate degree of accuracy $-$ it will normally say in the question. Steps to Success: Perimeter of a semi-circle Step 1: Find the diameter of your circle, if you are given the radius, double it to find the diameter. Step 2: Substitute your diameter into the formula $-C = \pi x d$ Step 3: Divide the circumference of the circles by 2. This will give you the arc length. Step 4: To find the perimeter of the semi-circle you will then need to add the diameter to your arc length. Step 5: Write your answer from the calculator and round to an appropriate degree of accuracy $-$ it will normally say in the question. | | | Lesson | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | The Sutton Academy Steps to Success: | Feedback | |--------------------------------------|---|---|------------------------------|---|----------| | To learn how to | Students will know how to calculate the area of a circle using the | Area – the amount of space | Students need to know how | Steps to Success: Area of a circle | recubuck | | calculate the area | formula $A = \pi r^2$, where r is the radius. | inside a 2D shape | to round to a given decimal | Step 1: Find the radius of your circle, if you are given the diameter, half | | | of a circle. | • Students will know how to find the area of circle when the diameter is | Formula sheet | place or significant figure. | it to find the radius. | | | | known. | | Students need to know how | Step 2: Substitute your radius into the formula – A = πr^2 | | | | $ullet$ Students will know how to find the area of a circle in terms of π . | | to identify the parts of a | Step 3: Type your calculation in the calculator. | | | | • Students will know how to calculate the area of semi circles, quarter | | circle. | Step 4: Write your answer from the calculator and round to an | | | | circles and three-quarters of a circle. | | | appropriate degree of accuracy – it will normally say in the question. | | | | • Students will know how to use inverse operations to find the missing | | | | | | | radius or diameter when given the area. | | | Steps to Success: Area of a semi circle | | | | Opportunity for challenge: | | | Step 1: Find the radius of your circle, if you are given the diameter, half | | | | • Students will know how to solve problems involving the area of circles. | | | it to find the radius. | | | | • Students will know how to calculate the area of compound shapes | | | Step 2: Substitute your radius into the formula – A = πr^2 and then | | | | involving circles or parts of circles. | | | dividing you answer by 2 to get the area of the semi-circle. | | | | | | | Step 3: Type your calculation in the calculator. | | | | | | | Step 4: Write your answer from the calculator and round to an | | | To leave house | | Thursday, and the law and aids | | appropriate degree of accuracy – it will normally say in the question. | | | To learn how to
calculate missing | Students will know how to find missing lengths in a right-angled | Hypotenuse – the longest side | Students need to know how | Steps to Success: Using Pythagoras' Theorem to find the hypotenuse. | | | sides using | triangle using Pythagoras' theorem. | in a right-angled triangle. It can always be found opposite the | to use BIDMAS involving | Step 1: In order to find the missing side of a triangle using Pythagoras' theorem, we need to work out which side corresponds to each of the | | | Pythagoras' | Students will know how to prove a triangle is right angled using | right angle | square numbers. | letters a, b and c in the equation $a^2+b^2=c^2$, remembering that the | | | Theorem. | Pythagoras' theorem. | Theorem – a statement that | | longest side is the hypotenuse which is known as c. a and b will be | | | | Opportunity for challenge: | has been proven to be true | | either one of the two perpendicular sides. | | | | Students will know how to solve problems involving multiple right-
angled triangles using Pythagoras' theorem. | Formula sheet | | Step 2: Label your diagram. | | | | | Torrida Silect | | Step 3: Next we substitute the values into the equation $a^2 + b^2 = c^2$ | | | | Students will know how to use Pythagoras' Theorem to solve problems involving perimeter or area. | | | Step 4: Calculate the square numbers and then add the values | | | | problems involving perimeter of area. | | | (BIDMAS). | | | | | | | Step 5: Don't forget to square root your value to get the length of the | | | | | | | side. | | | | | | | Step 6: Round your answer to an appropriate degree of accuracy if | | | | | | | necessary. | | | | | | | Step 7: Check that your answer looks right. Is the hypotenuse the | | | | | | | longest side? | | | | | | | Steps to Success: Using Pythagoras' Theorem to find one of the | | | | | | | perpendicular sides. | | | | | | | Step 1: In order to find the missing side of a triangle using Pythagoras' | | | | | | | theorem, we need to work out which side corresponds to each of the | | | | | | | letters a, b and c in the equation $a^2+b^2=c^2$, remembering that the | | | | | | | longest side is the hypotenuse which is known as c. a and b will be | | | | | | | either one of the two perpendicular sides. | | | | | | | Step 2: Label your diagram. | | | | | | | Step 3: Next we substitute the values into the equation $a^2 + b^2 = c^2$ | | | | | | | Step 4: Rearrange the equation to get either $a^2 = c^2 - b^2$ OR $b^2 = c^2 - a^2$ | | | | | | | Step 5: Calculate the square numbers and then add the values | | | | | | | (BIDMAS). Step 6: Don't forget to square root your value to get the length of the | | | | | | | side. | | | | | | | Step 7: Round your answer to an appropriate degree of accuracy if | | | | | | | | | | | | | | necessary. | | | Lesson | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: The Sutton Academy Feedba | |--|---|--|--|---| | | | | | Step 8: Check that your answer looks right. Is the hypotenuse the longest side? | | To learn how to calculate missing sides in right angled triangles using trigonometry. | Students will know how to calculate missing sides in right angled triangles using SOHCAHTOA. Students will know how to use the formula triangles for SOHCAHTOA to find missing sides. | Trigonometry —Relationships between side lengths and angles of triangles Hypotenuse — the longest side in a right-angled triangle. It can always be found opposite the right angle Opposite — for right angled triangles the opposite is the side opposite the angle that we know or are trying to find. Adjacent — next to | Students will need to
substitute values into
expressions/formulae. | Steps to Success — Calculating a missing side using SOHCAHTOA: Step 1: Label the sides O, H and A. Step 2: Circle the side you know and the side you are trying to find. Step 3: Identify the trigonometric function you are using (sin, cos or tan). Step 4: Substitute the lengths and angles into the correct place in the formula triangle. Step 5: Write down the calculation you need to do and then use your calculator to work out the answer. Step 6: Round your answer to an appropriate degree of accuracy, this is usually given in the question. | | To learn how to calculate missing angles in right angled triangles using trigonometry. | Students will know how to calculate missing angles in right angled triangles using SOHCAHTOA. Opportunity for challenge: Students will know how to solve multi-step problems involving more than one right-angled triangle using SOHCAHTOA. Students will know how to use trigonometry to solve simple problems involving perimeter or area. | Inverse - Opposite | Students need to know how to find the missing sides of a right-angled triangle using trigonometry. | Steps to Success – Calculating a missing angle using SOHCAHTOA: Step 1: Label the sides O, H and A. Step 2: Circle the two sides you know. Step 3: Identify the trigonometric function you are using (sin, cos or tan). Step 4: Substitute the lengths and angles into the correct place in the formula triangle. Step 5: Write out the formula that is created. Step 6: Use the inverse trig function to calculate the missing angle (Sin¹, Cos¹, Tan¹). Step 7: Round your answer to an appropriate degree of accuracy, this is usually given in the question. | | | | Exam Prepara | ition 6 | |