Knowledge Rich Curriculum Plan

Year 10 Foundation+ Geometry 1

Lesson Objective	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that.	Assessment
To learn how to convert units for measure	- Students will know how to convert units for length including $\mathrm{mm}, \mathrm{cm}, \mathrm{m}, \mathrm{km}$ - Students will know how to convert units for mass including mg, g, kg, tonnes - Students will know how to convert units for volume including ml, cl, l	Convert - change/ swap to Metric - The metric system is a system of measurement that uses the meter, litre, and gram as base units of length (distance), capacity (volume), and weight (mass) Capacity - the maximum amount that something can contain. Volume - the amount of space inside a 3D object Mass - the weight of an object	- Students need to know how to multiply and divide by powers of 10	
To learn how to measure, draw and estimate angles	- Students will know how to use a protractor to measure and draw an angle, ensuring that they start at 0 when measuring. - Students will know how to measure reflex angles. Either by measuring the other angle(s) on the point and subtracting from 360° or by splitting the reflex angle into two angles and adding both measured angles together. - Students will know how to draw reflex angles. Either by subtracting the angle from 360°, drawing that angle then mark the reflex angle or by subtracting the reflex angle from 180°, drawing that angle on a straight line and then mark the reflex angle. - Students will know how to estimate angles		- Students should be able to recognise acute angles, reflex angles, right angles and obtuse angles	
To learn how to calculate missing angles in triangles and quadrilaterals	- Students will know that the angles in a triangle add to 180° - Students will know that the angles in a quadrilateral add to 360° - Students will know how to find missing angles in special triangles using the rules; in isosceles triangles the base angles are equal and equilateral triangle all angles are the same size. - Students will know how to solve multi-step problems involving angles in triangles - Students will know how to find missing angles in quadrilaterals - Students will know how to solve multi-step problems involving angles in quadrilaterals	Estimate - roughly calculate or judge the value, number, quantity, or extent of. Acute angle - An angle that is less than 90° Obtuse angle - An angle that is more than 90° but less than 180° Reflex angle - An angle that is more than 180° but less than 360° Right angle - An angle that is exactly 90° Isosceles Triangle - a triangle with two equal sides and two equal angles Equilateral Triangle - a triangle with three equal sides and three equal, 60° angles Scalene Triangle - a triangle with no equal sides or angles Quadrilateral - a four-sided polygon, having four edges and four corners	- Students should already know the basic angle facts: angles on a straight line add to 180°, angles around a point add to 360°, angles in a triangle add to 180° - Students should already know the properties of special triangles	
To learn how to calculate interior angles in polygons	- Students will know how to use the fact that angles in a triangle sum to 180 to find the angle sums of any polygon. - Students will know how to use the formula $(\mathrm{n}-2) \times 180$ to find the sum of interiors angles of any polygons. - Students will know how to find one interior angle of a polygon using the formula ($n-2$) $\times 180$ and dividing by the number of sides of the polygon.	Interior-Inside Polygon - a closed shape with straight sides Regular Polygon - A polygon where all sides are the same length and all angles are equal	- Students need to know that the angles in a triangle add to 180 - Students need to know the difference between regular and irregular polygons	

Lesson Objective	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that..	Assessment
	- Students will know how to apply the rules for finding interior and exterior angles to solve multi-step problems involving both regular and irregular polygons	Irregular Polygon - A polygon where all sides are the same length and all angles are not equal Tesselate - fit together without gaps or overlapping.		
To learn how to calculate exterior angles in polygons	- Students will know how to calculate the size of an exterior angle of a polygon using the calculation 360 /number of sides. Students will know that exterior angles are the angles on the outside of a polygon. - Students will know to calculate the size of an interior angle from subtracting the exterior angle from 180°. - Students will know that the interior and exterior angle add to 180 - Students will know how to determine the number of sides for a polygon using the exterior angle	Exterior - Outside Exterior angle - is the angle between a side of a polygon and an extended adjacent side.	- Students need to know that angles on a straight line add to 180°	
To learn how to find missing angles in parallel lines	- Students will know how to identify alternate, corresponding and co-interior angles - Students will know that vertically opposite angles are equal - Students will know that corresponding angles are equal - Students will know that alternate angles are equal - Students will know that co-interior angles add to 180 - Students will know how to find missing angles in parallel lines and give clear reasons for their answers	Parallel - parallel lines are two lines that are side by side and have the same distance continuously between them Corresponding - matching Co-interior Angles - angles that lie between two lines and on the same side of a transversal Transversal - a line that crosses at least two other lines	- Students need to know that angles on a straight line add to 180° - Students need to know that angles around a point add to 360°	
To learn how to combine angle rules to find missing angles in parallel lines	- Students will know how to apply the rules of angles in parallel lines and other angle facts to solve multi-step problems involving angles in parallel lines - Students will know how to give clear, accurate reasons for their answers.		- Students need to be able to find missing angles in triangles - Students need to be able to identify alternate, corresponding and co-interior angles	
To learn how to draw and measure bearings.	- Students will know the rules for bearings; 1) Always measure from North 2) Bearings must be written as 3 digits. 3) Always measure in a clockwise direction. - Students will know how to use a protractor to accurately draw bearings from A to B and B to A. - Students will know how to use a protractor and ruler to accurately measure bearings on a map, including measuring from A to B and B to A. - Students will know how to accurately draw and measuring bearings using a protractor to solve problems	Bearing - angles, measured clockwise from north	- Students should already know how to measure and draw angles - Students should know how to calculate angles in parallel lines using the fact that co-interior angles add to 180	

Lesson Objective	Intended Knowledge: Students will know that...	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to accurately construct triangles	- Students will know how to accurately construct a triangle using a protractor and ruler given SAS or ASA for the triangle - Students will know how to accurately construct a triangle from three sides using a pair of compasses	Construct - In maths, construct means to draw a shape, line or angle accurately using a compass and rule	- Students should already know how to accurately draw angles using a protractor	
To learn how to construct angles and bisectors	- Students will know how to construct a perpendicular bisector of any given line - Students will know how to construct a perpendicular from a point to a line. - Students will know how to construct a bisector of any given angle. - Students will know how to accurately construct angles including 45° and 90°. - Students will know that the perpendicular distance from a point to a line, is the shortest distance to the line.	Perpendicular - at a right angle to Bisect - cut into two equal parts Bisector - A line that splits an angle or line into two equal parts	- Students should already know how to measure the length of a line using a ruler	
To learn how to construct loci	- Students will know how to construct a region bounded by a circle and an intersecting line. - Students will know how to construct a given distance from a point and given distance from a line. - Students will know how to construct equal distances from two points or two line segments. - Students will know how to construct regions which may define by 'nearer to' or 'greater than' - Students will know how to use the rules of loci to solve 2D loci problems. - Students will know how to solve loci problems involving the use of constructions; angle bisectors, perpendicular bisectors etc.	```Locus (Loci is the plural) - the set of all points (usually forming a curve or surface) satisfying some condition Equidistant - an equal distance```	- Students need to know how to construct a perpendicular bisector of any given line - Students need to know how to construct a bisector of any given angle.	

