

Knowledge Rich Curriculum Plan

Year 10 Foundation + – Geometry 3

		1x 1 1	The Sutton Ac	
Lesson/Learning Sequence	Intended Knowledge:	Tiered Vocabulary	Prior Knowledge:	Assessment
	Students will know that		In order to know this, students need to	
			already know that	
To learn how to calculate	• Students will know that two triangles are similar if all of the angles are the same size or if	Similar - having a resemblance in appearance,	Students will need to be able to recognise	
missing lengths in similar	the corresponding sides are in the same ratio. They will know that either of these	character, or quantity, without being identical.	similar and congruent shapes	
shapes	conditions will prove two triangles are similar.	Similar Shapes – two shapes are similar when one		
	• Students will know how to calculate the length scale factor for a shape that has been	is an enlargement of the other. When a shape is		
	enlarged	enlarged, the image is similar to the original		
		shape. It is the same shape but a different size.		
	• Students will know how to use the length scale factor to find missing lengths in similar	Similar triangles – two triangles are similar if all of		
	shapes	•		
	• Students will know how to find missing lengths in similar triangles and will know how to	the angles are the same size or if the		
	prove that two triangles where one is inside another are similar by identifying	corresponding sides are in the same ratio.		
	corresponding angles	Either of these conditions will prove two triangles		
	• Students will know when two triangles that are vertically opposite each other are similar	are similar.		
	and will know how to prove it by identifying alternate angles	Scale factor – how much the shape has been		
	and this witch to prove it by facilitying attenues angles	enlarged, the scale factor tells us what the		
		corresponding measures have been multiplied by		
To learn how to identify	• Students will know the criteria for congruent triangles. (SSS, SAS, ASA and RHS)	Congruent – the same	Students will need to know how to find	
congruent shapes and prove		Hypotenuse – the longest side in a right-angled	missing angles in parallel lines	
congruence	• Students will know how to prove that two triangles are congruent by proving that one of			
congruence	the criteria for congruence is met. (SSS, SAS, ASA and RHS)	triangle. It can always be found opposite the	Students will need to know how to identify	
		right angle	vertically opposite angles	
		Parallel – parallel lines are two lines that are side	 Students will need to know the angle 	
		by side and have the same distance continuously	properties of special triangles	
		between them		
		Isosceles Triangle – a triangle with two equal		
		sides and two equal angles		
		Corresponding – matching		
		Co-interior Angles – angles that lie between two		
		lines and on the same side of a transversal		
To learn how to represent	• Ctudents will know how to represent a column vector on a coordinate grid	Vector – A vector describes a movement from	Students will need to know how to use	
and interpret column vectors	Students will know how to represent a column vector on a coordinate grid			
and interpret column vectors	• Students will know how to write a column vector given one drawn on a coordinate grid	one point to another. A vector quantity has both	Pythagoras' theorem to calculate the	
	• Students will know that a negative vector has the same magnitude but the opposite	direction and magnitude.	hypotenuse of a right-angled triangle	
	direction.	Magnitude – size		
	• Students will know how to combine column vectors by adding or subtracting them and			
	draw resulting vectors			
	• Students will know how to multiply column vectors by a scalar			
	Students will know how to solve substitution problems and equations involving column			
	vectors			1
To loom house to all to		Transferme		
To learn how to translate	• Students will know how to translate a shape by a given column vector	Transform – change	Students should know how to interpret a	1
shapes and describe	Students will know how to describe a translation using a column vector	Transformation – in maths, a transformation is a	column vector as a movement	
translations		process that manipulates a polygon or other two-		
		dimensional object on a plane or coordinate		1
		system		
		Translation – the process of moving something		
		from one place to another.		
	1			

Lesson/Learning Sequence	Intended Knowledge: Students will know that	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that	Assessment
To learn how to reflect shapes and describe reflections	 Students will know how to reflect a shape in a line in the form x = a, y = a, y = x, y = -x Students will know how to reflect a shape in the x-axis or y-axis Students will know how to describe a reflection fully 	Reflection – In maths, a reflection is a type of transformation where each point in a shape appears at an equal distance on the opposite side of a given line - the line of reflection Symmetry – the quality of being made up of exactly similar parts facing each other or around an axis.	Students need to know how to identify the equation of a straight line that is parallel to either the x- or y-axis	
To learn how to rotate shapes and describe rotations	Students will know how to rotate a shape about a centre Students will know how to describe a rotation fully	Rotate – turn Clockwise – in the same direction as the hands move around a clock (to the right) Anti-clockwise – in the opposite direction as the hands move around a clock (to the left) Origin – The origin is located at the intersection of the vertical and horizontal axes at the coordinates (0, 0)	Students need to know how to plot and write coordinates	
To learn how to enlarge shapes and describe enlargements	Students will know how to enlarge a shape by a positive scale factor Students will know how to enlarge a shape by a positive scale factor from a given centre of enlargement Students will know how to describe an enlargement fully Note: If students finish please use the opportunity for them to practise a mixture of the different transformations	Enlarge – change the size Enlargement – a type of transformation where we change the size of the original shape to make it bigger or smaller by multiplying it by a scale factor Scale factor – how much the shape has been enlarged, the scale factor tells us what the corresponding measures have been multiplied by	Students will need to know how to identify the length scale factor for enlargement	