

Knowledge Rich Curriculum Plan

Year 10 Intermediate – Algebra 4

		•	•	The Sutton Academy	
Lesson	Intended Knowledge:	Tiered Vocabulary	Prior Knowledge:	Assessment	Feedback
To learn how to	• Students will know how to find the nth term of a quadratic sequence in the form	Quadratic –	 Students need to 	Steps to Success – Quadratic nth term in the form $an^2 + b$	
find the nth	$an^2 + b$.	involving a squared	know how to find	Step 1: Find the differences between the terms in the sequence, if it isn't the same	
term of a	Opportunity for challenge:	algebraic term but	the nth term of a	you have to find the second difference – this shows that it is a quadratic sequence.	
quadratic	• Students will know how to find the nth term of a quadratic sequence in the form	no other power	linear sequence.	Step 2: Half the second difference and put it as the coefficient of n ^{2.}	
sequence.	$an^2 + bn + c$.	higher than 2	 Students will 	if the second difference is 2 then the sequence contains 1n² (we just write)	
		Substitution -	need to know	this as n²).	
		replacing letters	how to generate	if the second difference is 4 the sequence contains 2n ²	
		with numbers in	a sequence for a	• if the second difference is 6 then the sequence contains 3n ² and so on	
		algebraic	given quadratic	Step 3: Write out an ² – substitute in 1, 2, 3, 4, 5 to generate this sequence,	
		expressions or	nth term.	remember the order of operations!	
		equations		Step 4: Subtract an ² from your original sequence.	
				Step 5: These numbers should be the same. Add or subtract this number from	
				your an ² .	
				Steps to Success – Quadratic nth term in the form $an^2 + bn + c$	
				Step 1: Find the differences between the terms in the sequence, if it isn't the same	
				you have to find the second difference – this shows that it is a quadratic sequence.	
				Step 2: Half the second difference and put it as the coefficient of n ^{2.}	
				if the second difference is 2 then the sequence contains 1n² (we just write)	
				this as n²).	
				if the second difference is 4 the sequence contains 2n ²	
				if the second difference is 6 then the sequence contains 3n² and so on	
				Step 3: Write out an ² – substitute in 1, 2, 3, 4, 5 to generate this sequence,	
				remember the order of operations!	
				Step 4: Subtract an ² from your original sequence.	
				Step 5: Find the nth term of the linear sequence that is left over after the	
				subtraction - if it is the same number repeating it is just +/- that number.	
				Step 6: Write your answer in the form an ² + bn + c.	
To learn how to	• Students will know how to recognise graphs of quadratic functions.	Quadratic – an	Students need to	Steps to Success – Plotting Quadratic Graphs	
draw quadratic	• Students will know how to draw quadratic graphs by using a table of values	expression where	know how to	Step 1: If one isn't given, construct a table with one row for x-values and another	
graphs.	without a calculator.	the highest power of	substitute	for y-values. Use the values given in the question to determine what x-coordinates	
	• Students will know how to draw quadratic graphs by using a table of values with a	the variable is 2	positive and	to use – this may be given as an inequality or "for the values of x from -3 to 3".	
	calculator.	Parabola – the U or	negative integers	Step 2: Substitute each x-value into the given equation to generate each y-value.	
		∩ shape of a	into formulae	Step 3: Plot each coordinate pair on the graph with an x.	
		quadratic graph	involving squared	Step 4: Draw one smooth continuous curve through every point. This should	
			terms.	either be in the shape of a \cup or \cap .	
To learn how to	• Students will know how to identify the turning point using a graph of a quadratic	Turning Point – the	Students need to	Steps to Success- Interpreting Quadratic Graphs	
interpret	equation in the form of $ax^2 + bx + c = 0$.	point at which the	know how to	Solutions or roots to quadratic graphs	
quadratic	Students will know how to identify roots using the graph of quadratic equation in	gradient changes of	draw quadratic	If you are asked to find the solution or root of a quadratic graph in the form of	
graphs.	the form of $ax^2 + bx + c = 0$.	a curve (the	graphs.	$ax^2 + bx + c = 0$, it is asking for the x coordinate of where the curve touches or	
	• Students will know how to identify roots using the graph of quadratic equation in	maximum or		crosses the x-axis.	
	the form of $ax^2 + bx + c = d$. Where d is a constant.	minimum point on a		Turning point	
	Opportunity for challenge:	curve).		If you are asked to find the turning point of a quadratic, it is asking for the highest	
	Students will know how to draw a quadratic graph to find the turning points and	Root – a solution to		or lowest co-ordinate depending on the quadratic, where it "turns around".	
	roots.	an equation where			
	10000	a line or curve			
		crosses the x-axis.			
L	l.	1	ı		

Lesson	Intended Knowledge:	Tiered Vocabulary	Prior Knowledge:	Assessment Ine Sutton Academy	Feedback
To learn how to solve quadratics by factorising.	 Students will know how to solve quadratic equations in the form ax² + bx + c = 0, where a = 1, by factorising. Students will know how to solve quadratic equations involving the difference of two squares and where the coefficient of x² is 1. Opportunity for challenge: Students will know how to rearrange quadratic equations in the form ax² + bx + c = 0, where a = 1, to then factorise and solve. 	Solve – find an answer Equation – a mathematical statement where two algebraic expressions are equal Factorise – put into brackets by bringing common factors outside Quadratic Equation – an equation where the highest power of the variable is 2	• Students need to know how to factorise quadratic equations in the form $ax^2 + bx + c$ where $a = 1$.	Step 1: If required, rearrange the equation to make it equal zero and ensure that the x² term is positive. Step 2: Factorise the quadratic into either single or double brackets. Step 3: Write each bracket equal to 0. Step 4: Solve each of the linear equations formed to find the two values for x.	
To learn how to solve quadratics using the quadratic formula.	 Students will know that the quadratic formula is x = (-b±√b²-4ac)/2a Students will know that we use the quadratic formula when a quadratic cannot be factorised. Students will know how to identify the values for a, b and c from a quadratic equation including where the equation is not necessarily in the order ax² + bx + c. Students will know how to substitute the values for a, b and c into the quadratic formula to solve the corresponding quadratic equation. Students will know that to solve quadratic equations they must be equal to zero. Opportunity for challenge: Students will know how to rearrange equations to make them equal to zero before using the quadratic formula to solve them. 	Formula – A mathematical relationship or rule expressed in symbols. Formula sheet	Students need to be able to substitute numbers into formulae.	Steps to Success — Using the Quadratic Formula Step 1: Identify the values of a, b and c Step 2: Substitute the values for a, b and c into the correct places in the formula Step 3: Write out the calculation twice, once with the + and once with the — in place of the \pm Step 4: Use your calculator to work out the answer to each of the calculations produced in step 3 Step 5: Check you've rounded to the correct degree of accuracy $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
To learn how to recognise and draw cubic, reciprocal and exponential graphs.	 Students will know how to complete a table of values and plot a cubic function. Students will know how to recognise and sketch graphs of the reciprocal function y = k/x with x ≠ 0 Students will know how to recognise and sketch graphs of exponential functions. Students will know how to recognise the shape of different graphs and match equations to sketches. 	Cubic – an expression where the highest power of the variable is 3 Reciprocal – The reciprocal of a number is: 1 divided by the number. E.g. 1 x Exponential – a relation of the form y = a ^x	Students need to know how to substitute positive and negative numbers into formulae.	Steps to Success- Plotting Cubic Graphs Step 1: If one isn't given, construct a table with one row for x-values and another for y-values. Use the values given in the question to determine what x-coordinates to use. Step 2: Substitute each x-value into the given equation to generate each y-value. Step 3: Plot each coordinate pair on the graph with an x. Step 4: Connect the points together with a smooth connected curve. Do not use a ruler! Steps to Success- Plotting Reciprocal Graphs Step 1: If one isn't given, construct a table with one row for x-values and another for y-values. Use the values given in the question to determine what x-coordinates to use. Remember- 0 is never plotted on reciprocal graphs. Step 2: Substitute each x-value into the given equation to generate each y-value. This is always in the form $\frac{k}{x}$. Step 3: Plot each coordinate pair on the graph with an x, joining together the positive coordinates and negative coordinates as separate curves. Steps to Success- Plotting Exponential Graphs	

Lesson	Intended Knowledge:	Tiered Vocabulary	Prior Knowledge:	Assessment	Feedback		
				Step 1: If one isn't given, construct a table with one row for x-values and another for y-values. Use the values given in the question to determine what x-coordinates to use. Remember- when x = 1, y = 0. Step 2: Substitute each x-value into the given equation to generate each y-value. Step 3: Plot each coordinate pair on the graph with an x. Step 4: Connect the points together with a smooth connected curve. Do not use a ruler!			
Exam Preparation 11							