Knowledge Rich Curriculum Plan Year 11 Foundation – Geometry 2 | Lesson Objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Assessment | |---------------------------|---|--|---|------------| | | Students will know that | | In order to know this, students need to already know that | | | To learn how to convert | • Students will know how to convert units for length including mm, cm, m, km. | Convert – change/ swap to | Students need to know how to multiply and | | | metric units for | • Students will know how to convert units for mass including mg, g, kg, tonnes. | Metric – A system of measurement that | divide by powers of 10. | | | measures. | • Students will know how to convert units for volume including ml, cl, l. | uses the meter, litre, and gram as base | | | | | • Students will know how to make simple conversions between units of length including mm, cm, | units of length (distance), capacity | | | | | m, km. | (volume), and weight (mass) | | | | | • Students will know how to make simple conversions between units of mass including mg, g, kg, | Capacity – the maximum amount that something can contain. | | | | | tonnes. | Volume – the amount of space inside a 3D | | | | | • Students will know how to make simple conversions between units of volume including ml, cl, l. | object | | | | | Opportunity for challenge: • Students will know how to make multi-step conversions between different units of length, mass | Mass – the weight of an object | | | | | and volume. E.g. mm to m etc. | Vocabulary may be split up into the | | | | | and volume. E.g. min to mete. | sections of the lesson. | | | | To learn how to calculate | • Students will know how to calculate the perimeter of rectangles, squares, parallelograms and | Perimeter – the distance around the | Students should already know how to name | | | the perimeter of shapes | triangles | outside of a shape | different 2D shapes | | | | | Area – the amount of space inside a 2D | | | | | | shape Quadrilateral – a four-sided shape | | | | | | Parallelogram – a four-sided shape with | | | | | | two pairs of parallel opposite sides. | | | | | | | | | | To learn how to calculate | • Students will know how to calculate the area of rectangles, squares, parallelograms and triangles | Compound – something that is composed | Students need to know how to recognise | | | area | • Students will know how to calculate the area of compound shapes involving rectangles, squares, | of two or more separate elements; a | different quadrilaterals | | | | parallelograms and triangles | mixture. | | | | | | Compound shape – a shape made up of | | | | | | two or more geometric shapes | | | | | | | | | | | | | | | | To learn how to calculate | • Students will know that the formula for the area of a trapezium is $\frac{1}{2}(a+b)h$ | Trapezium – a quadrilateral with one pair | Students need to know how to calculate the area | | | the area of a trapezium | where a and b are the parallel sides and h is the height of the trapezium | of sides parallel. | of squares, rectangles, triangles and | | | | • Students will know how to calculate the area of a trapezium | | parallelograms | | | Add compound | Students will know how to calculate the area of compound shapes involving trapezia | | | | | | • Students will know how to solve worded problems involving the area of a trapezium | | | | | | • Students will know how to work backwards to find missing lengths given the area of a trapezium | | | | | | | | | | | To learn how to calculate | • Students will know how to calculate the circumference of a circle using the formula - πd, giving | Circumference – the perimeter of a circle | Students need to know how to identify the | | | circumference | their answer to a suitable degree of accuracy | Perimeter – the distance around the | different parts of a circle | | | | • Students will know how to use inverse operations to find the missing radius or diameter when | outside of a shape | , | | | | given the circumference. | Arc – a part of a curve, a part of the | | | | | • Students will know how to solve problems involving circumference of circles. | circumference of a circle | | | | | • Students will know how to find the perimeter of semi-circles | Radius – a straight line from the centre to | | | | | | the circumference of a circle or sphere | | | | Lesson Objective | Intended Knowledge: Students will know that | Tiered Vocabulary | Prior Knowledge: In order to know this, students need to already know that | Assessment | |---|--|--|---|------------| | | | Diameter – a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere | | | | To learn how to calculate the area of a circle | Students will know how to calculate the area of a circle using the formula πr² Students will know how to calculate the area of a circle using the formula πr², without a calculator leaving answers in terms of π. Students will know how to use inverse operations to find the missing radius or diameter when given the area. Students will know how to solve problems involving the area of circles. Students will know how to find the area of semi-circles and simple compound shapes | | Students need to know how to identify the different parts of a circle | | | To learn how to calculate missing sides using Pythagoras' Theorem | Students will know how to find missing lengths in a right-angled triangle using Pythagoras' theorem Students will know that to prove a triangle is right angled using Pythagoras' theorem they will substitute the values into the formula. Students will know how to solve worded problems using Pythagoras' theorem | Hypotenuse – the longest side in a right-
angled triangle. It can always be found
opposite the right angle
Theorem – a statement that has been
proved, or can be proved | Students will need to know how to square
numbers | | | To learn how to solve problems using Pythagoras' Theorem | Students will know how to solve worded problems using Pythagoras' theorem Students will know how to solve problems involving multiple right-angled triangles using Pythagoras' theorem | | Students will need to know how to find missing
sides using Pythagoras' theorem | | | To learn how to calculate missing sides and angles in right angled triangles using trigonometry | • Students will know that $Sin = \frac{Opposite}{Hypotenuse}$ • Students will know that $Cos = \frac{Adjacent}{Hypotenuse}$ • Students will know that $Tan = \frac{Opposite}{Adjacent}$ • Students will know how to use the formula triangles for SOHCAHTOA to find missing sides. • Students will know how to calculate missing sides in right angled triangles using SOHCAHTOA • Students will know how to calculate missing angles in right angled triangles using SOHCAHTOA | Trigonometry — Relationships between side lengths and angles of triangles Hypotenuse — the longest side in a right-angled triangle. It can always be found opposite the right angle Adjacent — next to, in maths the adjacent side in a right-angled triangle is the side that is adjacent to the angle, forming the angle with the hypotenuse Opposite — for right angled triangles the opposite is the side opposite the angle that we know or are trying to find. | Students need to know how to rearrange formulae Students need to know how to substitute numbers into formulae Students need to know how to use a calculator | | | To learn how to calculate missing sides and angles in right angled triangles using trigonometry | Students will know how to solve worded problems involving SOHCAHTOA Students will know how to solve multi-step problems involving more than one right-angled triangle using SOHCAHTOA. | | Students need to know how to calculate missing
sides and angles using SOHCAHTOA | | | Lesson Objective | Intended Knowledge: Students will know that | Tiered Vocabulary | Prior Knowledge: In order to know this, students need to already know that | Assessment | |------------------|---|-------------------|--|------------| | | | | | |