sA

The Sutton Academy

Knowledge Rich Curriculum Plan

Year 11 Higher - Geometry 2

Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to solve problems involving circumference	- Students will know how to calculate the circumference of a circle using the formula - $\pi \mathrm{d}$, giving their answer to a suitable degree of accuracy - Students will know how to calculate the arc length and perimeter of a semi-circle - Students will know how to calculate the arc length and perimeter of quarter circles or three quarters of a circle - Students will know how to use inverse operations to find the missing radius or diameter when given the circumference. - Students will know how to solve problems involving area and circumference of circles	Circumference - the perimeter of a circle Perimeter - the distance around the outside of a shape Arc - a part of a curve, a part of the circumference of a circle Radius - a straight line from the centre to the circumference of a circle or sphere Diameter - a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere	- Students should already know how to calculate circumference	
To learn how to solve problems involving the area of a circle	- Students will know how to calculate the area of a circle using the formula $\pi \mathrm{rr}^{2}$ leaving answers rounded to a given degree of accuracy - Students will know how to calculate the area of a circle using the formula πr^{2}, without a calculator leaving answers in terms of π. -Students will know how to calculate the area of semi circles - Students will know how to calculate the area of quarter circles or three-quarters of a circle - Students will know how to use inverse operations to find the missing radius or diameter when given the area. - Students will know how to solve problems involving the area of circles. - Students will know how to calculate the area of compound shapes involving circles or parts of circles	Radius - a straight line from the centre to the circumference of a circle or sphere Diameter - a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere	- Students should already know how to calculate the area of a circle given the radius or diameter - Students should know how to identify the different parts of a circle	
To learn how to calculate the area, arc length and perimeter for a sector	- Students will know how to calculate the area of a sector using the formula, Area of a Sector $=\frac{\theta}{360} \pi r^{2}$ - Students will know how to calculate the angle of a sector given its area - Students will know how to calculate the radius of a sector given its area - Students will know how to calculate the arc length of the sector using the formula Arc Length $=\frac{\theta}{360} \pi d$ - Students will know how to calculate the perimeter of a sector - Students will know how to calculate the angle of a sector given its arc length using inverse operations - Students will know how to calculate the radius of a sector given its arc length	Sector - a part of a circle made of the arc of the circle along with its two radii.	- Students need to know how to calculate area and circumference of a circle - Students need to know that angles around a point add to 360	

Lesson/Learning Sequence	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to apply the circle theorems	- Students will know that the radius of a circle meets a tangent at 90° - Students will know how to use this circle theorem to calculate missing angles - Students will know that the angle at the centre of a circle is double the angle at the circumference - Students will know how to use this circle theorem to calculate missing angles	Theorem - a statement that has been proved, or can be proved Tangent - a line touching a circle or curve at only one point	- Students need to know how to find missing angles in isosceles triangles - Students need to know the basic angle facts	
To learn how to apply the circle theorems	- Students will know that angles in the same segment are equal - Students will know how to use this circle theorem to calculate missing angles - Students will know that opposite angles in a cyclic quadrilateral add to 180° - Students will know how to use this circle theorem to calculate missing angles	Segment - a region bounded by a chord and a corresponding arc lying between the chord's endpoints Chord - the line segment joining two points on a curve Quadrilateral - a four-sided shape Cyclic Quadrilateral - a quadrilateral whose vertices all lie on a single circle	- Students need to know that the angle at the centre of a circle is double the angle at the circumference	
To learn how to apply the circle theorems	- Students will know that angles in alternate segments are equal - Students will know how to use this circle theorem to calculate missing angles - Students will know how to solve multi-step problems using the circle theorems	Segment - a region bounded by a chord and a corresponding arc lying between the chord's endpoints	- Students will need to know that the tangent meets a radius at 90°	
To learn how to apply the circle theorems	- Students will know how to solve multi-step problems using the circle theorems		- Students will need to know the circle theorems	

