Knowledge Rich Curriculum Plan Year 11 Higher+ Geometry 1 | Lesson/Learning Sequence | Intended Knowledge: Students will know that | Tiered Vocabulary | Steps to Success | Prior Knowledge: In order to know this | Feedback | |--|--|---|------------------|--|----------| | To learn how to solve problems using Pythagoras' theorem in 3D | Students will know how to calculate
missing lengths in 3D shapes using
Pythagoras' theorem | Hypotenuse – the longest side in a right-
angled triangle. It can always be found
opposite the right angle
Theorem – a statement that has been
proved, or can be proved | • | Students will need to be confident using Pythagoras' theorem to find missing lengths in right angled triangles | | | To learn how to solve problems using SOHCAHTOA in 3D | Students will know how to calculate
missing lengths and angles in 3D shapes
using Pythagoras' theorem and
SOHCAHTOA | Trigonometry — Relationships between side lengths and angles of triangles Hypotenuse — the longest side in a rightangled triangle. It can always be found opposite the right angle Adjacent — next to, in maths the adjacent side in a right-angled triangle is the side that is adjacent to the angle, forming the angle with the hypotenuse Opposite — for right angled triangles the opposite is the side opposite the angle that we know or are trying to find. | | Students need to be able to calculate missing
lengths and angles in right angled triangles using
SOHCAHTOA | | | To learn how to use the Sine rule | Students will know that the sine rule for missing sides is \$\frac{a}{SinA} = \frac{b}{SinB} = \frac{c}{SinC}\$\$ Students will know that the sine rule for missing angles is \$\frac{SinA}{a} = \frac{SinB}{b} = \frac{SinC}{c}\$\$ Students will know that we use the Sine rule with non-right-angled triangles where we know or can find a complete pair of opposites where we know both a side and the opposite angle Students will know how to find missing lengths using the Sine rule Students will know how to find missing angles using the Sine rule Students will know how to solve more complex problems using the Sine rule | | | Students need to know how to solve equations involving fractions Students need to know how to find missing lengths and angles using SOHCAHTOA | | | To learn how to use the Cosine rule | Students will know that the cosine rule for missing sides is a² = b² + c² - 2bcCosA Students will know that the cosine rule for missing angles is CosA = b² + c² - a²/2bc Students will know that we use the Cosine rule with non-right-angled triangles when | | | Students need to know how to use the sine rule to
find missing sides and angles Students need to know how to substitute numbers
into formulae | | | Lesson/Learning Sequence | Intended Knowledge: | Tiered Vocabulary | Steps to Success | Prior Knowledge: | Feedback | |--|---|-------------------|------------------|---|----------| | | Students will know that we do not have or cannot find a complete | | | In order to know this | | | | pair of opposites and instead we know | | | | | | | two sides and the included angle (and are | | | | | | | asked to find the third side) or we know | | | | | | | all three sides (and are asked to find an | | | | | | | angle) | | | | | | | Students will know how to use the cosine | | | | | | | rule to find missing sides and angles | | | | | | | Students will know how to solve multi- | | | | | | | step problems using the cosine rule and | | | | | | | also the sine rule where necessary | | | | | | To learn how to calculate the | Students will know that we use the | | • | • Students need to know how to calculate the area | | | area of a triangle using sine | formula below to calculate the area of a | | | of a triangle without sine | | | | triangle when we do not know the base | | | | | | | and perpendicular height but instead | | | | | | | know or can find two sides and the | | | | | | | included angle in a non-right-angled | | | | | | | triangle | | | | | | | Area of a triangle = $\frac{1}{2}$ abSinC | | | | | | | Students will know how to calculate the | | | | | | | area of a triangle using the formula | | | | | | | Students will know how to work | | | | | | | backwards to find missing lengths given | | | | | | | the area of a triangle, a length and an | | | | | | | angle | | | | | | | Students will know how to work | | | | | | | backwards to find a missing angle given | | | | | | | the area of a triangle and two lengths | | | | | | | Students will know how to solve multi- | | | | | | | step problems involving the sine and | | | | | | | cosine rules and area of a triangle | | | | | | | formulae | | | | | | | Students will know how to calculate the | | | | | | To loom and weather are at | area of a segment | | | | | | To learn and use the exact trig values | • Students will know the exact trig values | | • | Students will need to know how to rationalise | | | uig values | for sin(0), cos(0), tan(0), sin(30), cos(30), | | | denominators | | | | tan(30), sin(45), cos(45), tan(45), sin(60), | | | Students will need to know how to solve SOHCANTOA problems and use Buthagaras' | | | | cos(60), tan(60), sin(90), cos(90) | | | SOHCAHTOA problems and use Pythagoras' | | | | Students will know that tan(90) has no value | | | Theorem | | | | Students will know how to use the exact | | | | | | | trig values to solve problems involving | | | | | | | | | | | | | | trigonometry | | | | |