

Knowledge Rich Curriculum Plan

Course/Unit

con/Learning Coguenee	Intended Knowledge		Tiorod Voosbuler	Drier Knowledge	The Sutton Academy
son/Learning Sequence	Intended Knowledge: Students will know that		Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know the	Assessment
To learn how to construct nechanical model.	 Students will know how t Students will know how s Students will how to cons 	ketch a model		Students will need to know how to use formula Students will need to substitute	
: To learn how to use	Students will know what assumptions to make depending on the model.		+	Students will need to know basic physics.	
umptions and units in	Model	Modelling assumptions			
chanical models.	Particle – Dimensions of the object are negligible.	mass of the object is concentrated at a single point ortational forces and air resistance can be ignored			
	Rod – All dimensions but one are negligible, like a pole or a beam.	mass is concentrated along a line no thickness rigid (does not bend or buckle)			
	Lamina – Object with area but negligible thickness, like a sheet of paper.	mass is distributed across a flat surface			
	Uniform body – Mass is distributed evenly.	 mass of the object is concentrated at a single point at the geometrical centre of the body – the centre of mass 			
	Light object – Mass of the object is small compared to other masses, like a string or a pulley.	 treat object as having zero mass tension the same at both ends of a light string 			
	Inextensible string – A string that does not stretch under load.	 acceleration is the same in objects connected by a taut inextensible string 			
	Smooth surface	 assume that there is no friction between the surface and any object on it 			
	Rough surface – If a surface is not smooth, it is rough.	objects in contact with the surface experience a frictional force if they are moving or are acted on by a force			
	Wire – Rigid thin length of metal.	treated as one-dimensional			
	Smooth and light pulley – all pulleys you consider will be smooth and light.	 pulley has no mass tension is the same on either side of the pulley Share this 			
	Bead – Particle with a hole in it for threading on a wire or string,	moves freely along a wire or string tension is the same on either side of the bead			
	Peg – A support from which a body can be suspended or rested.	dimensionless and fixed can be rough or smooth as specified in question			
	Air resistance – Resistance experienced as an object moves through the air.	usually modelled as being negligible			
	Gravity – Force of attraction between all objects. Acceleration due to gravity is denoted by g.	 assume that all objects with mass are attracted towards the Earth Earth's gravity is uniform and acts vertically downwards g is constant and is taken as 9.8 m s⁻², unless otherwise stated in the question 			
	 Students will know the SI Students will know that k 	units. G measures mass and not weight.			
	Students will know how t	Ū.			

			The Sutton A		
Lesson/Learning Sequence	Intended Knowledge: Students will know that	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that	Assessment	
To learn how to use vectors in mechanics.	 Students will know that vector quantities are displacement, velocity, acceleration and force/weight. Students will know how to fully describe motion using vectors. Students will know you can describe vectors using i, j notation, where I and j are the unit vectors in the positive x and y directions Students will know that the magnitude of the displacement vector. Students will know that speed is the magnitude of the velocity vector. 		Students will need to know how to find the magnitude of a vector. Students will need to know ow to find an angle of a vector.		

Students will know how to use the trapezium rule to approximate integration.	 Students will know that if you cannot integrate a function algebraically, you can use a numerical method to approximate the area beneath a curve. Students will know that to approximate the area given by ∫_a^b ydx you can divide the area into n equal strips. Each strip will be of width h where h = b-a/n Students will know that ∫_a^b ydx ≈ 1/2 h(y₀ + 2(y₁ + y₂ + y_{n-1}) + y_n) where h = b-a/n and y_i = f(a + ih) Students will know if there answer is an overestimate (convex) or underestimate. 	Students will need to know the area of a trapezium. Students will need to know how to substitute into a formula Students will need to know how to use radians.	
--	---	--	--