Knowledge Rich Curriculum Plan

Year 12 Maths
Unit 12 - Differentiation

Maths Year 12	Unit: Differentiation			
Lesson/Learning Sequence	Intended Knowledge: Students will know that...	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that...	Assessment
Lesson 60: Gradients of curves Lesson Objective: To learn how to find the gradient of a curve using a tangent.	- Students will know that the gradient of a curve is constantly changing. - Students will know that the gradient of the tangent at that particular point is the gradient of the curve at that particular point. - Students will know how to find the gradient at a given point on the curve using a tangent.		- Students need to know how to find the gradient of a line segment. - Students need to know how to find the gradient of a straight line using two points. - Students need to know that a tangent is a straight line that touches the curves at one point.	
Lesson 61: Finding the derivative Lesson Objective: To learn how to use differentiation from first principles to find the gradient of a curve.	- Students will know that as two points, A and B, get closer to each other on the curve the gradient of the chord $A B$ gets closer to the gradient of the tangent - \quad Students will know that h will tend to 0 . - Students will know how to define the gradient function. - Students will know how to use the gradient function to find the gradient of the curve for any value of x using substitution. - Students will know how to find the derivative from using first principles.		- Students need to know how to substitute into formulae. - Students need to know how to rearrange formulae. - Students need to know how to use the tangent to find the gradient at a point of a curve. - Students need to know how to find the gradient of a line segment. - Students need to know how to collect like terms.	
Lesson 62: Differentiating ($\mathrm{x}^{\wedge} \mathrm{n}$ /Quadratics/Function s with two or more terms) Lesson Objective: To learn how to differentiate expressions with multiple terms.	- Students will know how to differentiate by multiplying the function by the power and then subtracting 1 from the power. - Students will know to only differentiate when a term is written as a single power of x. - Students will know how to write derivative notation. - Students will know how to differentiate a term with a constant in front of it. - Students will know how to simplify expressions to get each term to a single power of x. - Students will know how to differentiate quadratic expressions. - Students will know how to differentiate function with two or more terms by differentiating one term at a time.		- Students need to know how to collect like terms. - Students need to know how to use index laws to simplify algebraic expressions. - Students need to know how to manipulate negative indices. - Students need to know how to manipulate fractional powers. - Students need to know how to Simplify algebraic fractions. - Students need to know how to expand brackets. - Students need to know that differentiating is a way to find the gradient of a curve.	
Lesson 63: Gradients, tangents and normal Lesson Objective: To learn how to find the equation of a tangent and normal at a point on a curve.	- Students will know how to find the gradient by differentiating a function and substituting in the x coordinate. - Students will know how to find the equation of a tangent using the gradient and a point on the curve. - Students will know that the normal is the straight line perpendicular to the tangent.		- Students need to know how to differentiate multiple terms. - Students need to understand differential notation. - Students need to know how to find the gradient using differentiation.	

Maths Year 12	Unit: Differentiation			
Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that.	Assessment
	- Students will know how to find the equation of a normal using the perpendicular gradient of the tangent and a point on the curve.		- Students need to know how to find a perpendiculargradient. - Students need to know how to find the equation of a line using the tangent and a point. - Students need to know how to substitute into formulae. - Students need to know how to rearrange formulae. - Students need to know how to simplify expressions using index laws. - Students need to know that all terms need to be expressed as a single power of x.	
Lesson 64: Increasing and decreasing functions Lesson Objective: To learn how to determine if a function is increasing or decreasing.	- Students will know that a function is increasing if the derivative is greater than or equal to zero for all values of x. - Students will know that a function is decreasing if the derivative is less than or equal to zero for all values of x . - Students will know how to determine if a function is increasing or decreasing using the derivative. - Students will know that some functions are increasing for a certain interval and decreasing for a certain interval.		- Students need to know how to differentiate multiple terms. - Students need to know how to factorise expressions. - Students need to know how to solve linear inequalities. - Students need to know how to solve quadratic inequalities. - Students need to know how to use index laws to simplify algebraic expressions.	
Lesson 65: Second order derivatives Lesson Objective: To learn how to find second order derivatives.	- Students will know how to use second order differential notation. - Students will know how to find second order derivatives. - Students will know that the second order derivative is found by differentiating a function twice. - Students will know that the second order derivative is the rate of change of the gradient function.		- Students need to know how to differentiate multiple terms. - Students need to know how to use index laws to simplify algebraic expressions. - Students need to know how to substitute into formulae. - Students need to know how to solve equations. - Students need to know how to use differential notation.	
Lesson 66: Stationary points Lesson Objective: To learn how to find the stationary points of a curve.	- Students will know that a stationary point is any point the curve has a gradient of zero. - Students will know how to find the coordinates of the stationary points using zero for the value of the gradient with the derivative and solving to find the x-coordinate.		- Students need to know how to differentiate multiple terms. - Students need to know to find second order derivatives. - Students need to know how to rearrange formulae.	

Maths Year 12	Unit: Differentiation			
Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that.	Assessment
	- Students will know that a stationary point is a local maximum when the gradient of the curve goes from positive to zero to negative. - Students will know that a stationary point is a local maximum when the second derivative is less than zero. - Students will know that a stationary point is a local minimum when the gradient of the curve goes from negative to zero to positive. - Students will know that a stationary point is a local minimum when the second derivative is greater than zero. - Students will know that a stationary point is a point of inflection when the gradient of the curve goes from either negative-zero-negative or positive-zero-positive. - Students will know that when the second derivative is equal to zero the stationary point could be a local maximum, local minimum or a point of inflection and to look at points on either side to determine its nature. - Students will know how to determine if a stationary point in a local maximum, local minimum or a point of inflection by using the second derivative.		- Students need to know how to substitute into formulae. - Students need to know how to solve equations. - Students need to know how to use index laws to simplify expressions. - Students need to know how to find the y coordinate using the x-coordinate and an equation. - Students need to know how to use the derivative to find the gradient of a curve at a particular point.	
Lesson 67: Sketching gradient functions Lesson Objective: To learn how to sketch a gradient function.	- Students will know that a minimum or maximum in given function will cut the x -axis in the corresponding gradient function. - Students will know that a point of inflection in given function will touch the x-axis in the corresponding gradient function. - Students will know that a positive gradient in given function will be above the x -axis in the corresponding gradient function. - Students will know that a negative gradient in given function will be below the x-axis in the corresponding gradient function. - Students will know that a vertical asymptote in given function will become a vertical asymptote in the corresponding gradient function. - Students will know that a horizontal asymptote in given function will become a horizontal asymptote at the x-axis in the corresponding gradient function.		- Students need to know how to sketch graphs. - Students need to know how to determine if a stationary point is a local maximum or local minimum using a drawing of the function. - Students need to know how to determine if a stationary point is a point of inflection using a drawing of the function. - Students need to know what an asymptote is and how a graph acts around it. - Students need to know if a line segment has a positive or negative gradient suing a drawing of the function.	

Maths Year 12	Unit: Differentiation			
Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that.	Assessment
	- Students will know how to select the features of a given function and use them to sketch the corresponding gradient function.			
Lesson 68: Modelling with differentiation Lesson Objective: To learn how to model reallife situations using differentiation.	- Students will know how to set up a differential equation for a real-life situation. - Students will know how to set up differential equations involving shapes. - Students will know how to find the maximum or minimum perimeter/area/volume/surface area of a shape using second order differentiation. - Students will know how to solve problems involving shapes.		- Students need to know how to find the area or perimeter of 2D shapes. - Students need to know how to find the volume or surface area of 3D shapes. - Students need to know how to differentiate multiple terms. - Students need to know how to find second order derivatives. - Students need to know how to mind the minimum or maximum points. - Students need to know how to form equations. - Students need to know how to use index laws. - Students need to know how to rearrange formulae. - Students need to know how to substitute into formulae.	

