

Knowledge Rich Curriculum Plan

Course/Unit

Lesson/Learning Sequence	Intended Knowledge:	Tiered Vocabulary	Prior Knowledge:	Assessment
	Students will know that		In order to know this students, need to already know that	
LO: To learn how to draw and	Students will know how to draw displacement time graphs		Students will need to know how to draw graphs	
use displacement-time	• Students will know that velocity is the rate of change of displacement.		Students will need to know how to find a gradient.	
graphs and velocity-time	• Students will know that the gradient on a displacement-time graph the gradient		Students will need to know how to find the area under a graph.	
graphs.	represents the velocity.			
	• Students will know that if the displacement-time graph is a straight line, then the			
	velocity is constant.			
	 Students will know that the average velocity = displacement from starting point/ time taken 			
	Line Luxen. Students will know that acceleration is the rate of change of velocity.			
	 Students will know that in a velocity-time araph the aradient represent the 			
	acceleration.			
	• Students will know that if the velocity-time graph is a straight line, then the			
	acceleration is constant.			
	• Students will know that the area between a velocity-time graph and the			
	horizontal axis represents the distance travelled.			
	• Students will know that for a motion in a straight line with positive velocity, the			
	area under the velocity-time graph up to a point t represents the displacement at			
	time t.			
	Churden har will be any heart the state in initial websites. M. Simply selection	<i>a</i>	Students will need to know how to rearrange formula	
how to use constant	 Students will know that that u = initial velocity. v = jinal velocity S = displacement a = assolaration T = time. 	g	Students will need to know now to rearrange formula.	
acceleration formulae.	• $5 = arguadement$, $a = acceleration. T = time.$ • Students will know how to use the $v=u + at$ formula			
	Students will know to use the formula $c = \binom{u+v}{t}$			
	• Students will know to use the jointuit $s = \left(\frac{1}{2}\right)t$			
	 Students will know how to derive the formula from a velocity graph. Students will be such as the deriverse data and use the formula. 			
	• Students will know now to draw models and use the jornala.			
LO: To learn how to learn	• Students will know how to use the formula $v^2 = u^2 + 2as$		Students will need to know how to rearrange formula.	
how to use constant	• Students will know how to use the formula $s = ut + \frac{1}{2}at^2$			
acceleration formulae.	• Students will know how to use the formula $s = vt - \frac{2}{1}at^2$			
	 Students will know how to draw models and use the formula 			
To learn how to solve	• Students will know that the downward acceleration of an object can be modelled		Students will need to know the equations of motion.	
problems involving vertical	as g = 9.8			
motion under gravity.	• Students will know that the upward acceleration of an object can be modelled as			
	g = -9.8			
	• Students will be able to apply the above to the equations of motion.			
	Students will be able to draw models based on gravity.			
	 Students will be able to solve problems involving upwards and downwards 			
	motion.			

Students will know how to use the trapezium rule to approximate integration.	 Students will know that if you cannot integrate a function algebraically, you can use a numerical method to approximate the area beneath a curve. Students will know that to approximate the area given by ∫_a^b ydx you can divide the area into n equal strips. Each strip will be of width h where h = b-a/n Students will know that ∫_a^b ydx ≈ 1/2 h(y₀ + 2(y₁ + y₂ + y_{n-1}) + y_n) where h = b-a/n and y_i = f(a + ih) Students will know if there answer is an overestimate (convex) or underestimate 	Students will need to know the area of a trapezium. Students will need to know how to substitute into a formula Students will need to know how to use radians.
--	--	--