## $\Leftrightarrow$ The Sutton Academy

Knowledge Rich Curriculum Plan

Course/Unit

|  | Students will know that... |  | In order to know this students, need to already know that... |  |
| :---: | :---: | :---: | :---: | :---: |
| LO: To learn how to draw and use displacement-time graphs and velocity-time graphs. | - Students will know how to draw displacement time graphs <br> - Students will know that velocity is the rate of change of displacement. <br> - Students will know that the gradient on a displacement-time graph the gradient represents the velocity. <br> - Students will know that if the displacement-time graph is a straight line, then the velocity is constant. <br> - Students will know that the average velocity = displacement from starting point/ time taken. <br> - Students will know that acceleration is the rate of change of velocity. <br> - Students will know that in a velocity-time graph the gradient represent the acceleration. <br> - Students will know that if the velocity-time graph is a straight line, then the acceleration is constant. <br> - Students will know that the area between a velocity-time graph and the horizontal axis represents the distance travelled. <br> - Students will know that for a motion in a straight line with positive velocity, the area under the velocity-time graph up to a point t represents the displacement at time $t$. |  | Students will need to know how to draw graphs Students will need to know how to find a gradient. Students wlll need to know how to find the area under a graph. |  |
| LO: To learn how to learn how to use constant acceleration formulae. | - Students will know that that $u=$ initial velocity. $V=$ final velocity <br> - $S=$ displacement, $a=$ acceleration. $T=$ time. <br> - Students will know how to use the $v=u+a t$ formula. <br> - Students will know to use the formula $s=\left(\frac{u+v}{2}\right) t$ <br> - Students will know how to derive the formula from a velocity graph. <br> - Students will know how to draw models and use the formula. | g | Students will need to know how to rearrange formula. |  |
| LO: To learn how to learn how to use constant acceleration formulae. | - Students will know how to use the formula $v^{2}=u^{2}+2 a s$ <br> - Students will know how to use the formula $s=u t+\frac{1}{2} a t^{2}$ <br> - Students will know how to use the formula $s=v t-\frac{1}{2} a t^{2}$ <br> - Students will know how to draw models and use the formula. |  | Students will need to know how to rearrange formula. |  |
| To learn how to solve problems involving vertical motion under gravity. | - $\quad$ Students will know that the downward acceleration of an object can be modelled as $g=9.8$ <br> - Students will know that the upward acceleration of an object can be modelled as $g=-9.8$ <br> - Students will be able to apply the above to the equations of motion. <br> - Students will be able to draw models based on gravity. <br> - Students will be able to solve problems involving upwards and downwards motion. |  | Students will need to know the equations of motion. |  |

on

- Students will know that if you cannot integrate a function algebraically, you can use a numerical method to approximate the area beneath a curve.
- Students will know that to approximate the area given by $\int_{a}^{b} y d x$ you can divide Students will need to know the area of a trapezium. Students will need to know how to substitute into a formula Students will need to know how to use radians.
- Students will know that $\int_{a}^{b} y d x \approx \frac{1}{2} h\left(y_{0}+2\left(y_{1}+y_{2} \ldots+y_{n-1}\right)+y_{n}\right)$ where $h=\frac{b-a}{n}$ and $y_{i}=f(a+i h)$
- Students will know if there answer is an overestimate (convex) or underestimate.

