The Sutton Academy

Knowledge Rich Curriculum Plan

Year 12/13 stats - Statistical distributions

Lesson/Learning Sequence	Intended Knowledge: Students will know that...	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that...	Assessment
LO: To learn about to probability distributions.	- Students will know that a probability distribution fully describes the probability of any outcome in the sample space. - Students will know that a probability distribution can be described as a probability mass function. - Students will know that a probability distribution can be described as a table. - Students will know that a probability distribution can be described as a diagram. - Students will know how to represent probabilities in a probability mass function. - Students will know that for a random variable X you can write $\sum P(X=x)=1$ for all x. - Students will know how to use a probability mass function to find probability. - Students will know how to solve problems given a probability distribution.	Random variable - Is a variable whose outcome depends on a random event.	Students will need to be able to calculate basic probability	
Lo: To learn how to use the binomial distribution	- Students will know that you can model X with binomial distribution $B(n, p)$ if -There is a fixed number of of trails, n. - There two possible outcomes (success and failure) - There is a fixed probability of success, p. - The trials are independent of each other. - Students will know that if a random variable X has binomial distribution $B(n, p)$ then its probability mass function is given by $p(X=r)=\binom{n}{r} p^{r}(1-p)^{n-r}$ - Students will know how find probabilities in the form $(P=r)$ - Students will know how to use the formula to find probabilities in the form $P(X \leq r)$		Studnets need to know how to use the chose function.	
Lesson Objective: To learn how to draw and use the properties of the normal distribution.	- Students will know the normal distribution has a bell shape with asymptotes at each end - Students will know that the normal distribution is symmetrical (mean = median =mode) - Students will know that the area under the curve is equal to one. - Students will know that IF X is normally distributed random variable, you write $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Nhere $\mu=$ mean and $\sigma^{2}=$ Variance. - Students will know tat 68% of the data lies within tone standard deviations of the mean. - Students will know that 95\% of the data lies within two standard deviations of the mean. - \quad Students will know that nearly all of the data (99.7\%) lies within three standard deviations of the mean		Students will have knowledge about mean and variance. Students will know what a continuous random variable.	

Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that.	Assessment
Lesson objective: To learn how to find probabilities from a normal distribution.	- Students will know to always sketch a graph to check that their answer makes sense. - Students will know how to use their calculators to find probabilities of normal distribution. - Students will know that you can use either > and \geq interchangeably with a continuous distribution.		Students will need to know how to find probabilities. Students need to know how to find probabilities using binomial distribution.	
Lesson objective: To learn how find the inverse normal distribution function.	- Students will know that for a given probability p, you can use your calculator to find a value of a such that $P(X<a)=p$. This is called the inverse normal distribution.		Students will need to know how to find probabilities using a calculator for normal distribution.	
Lesson objective: To learn to standardise the normal distribution.	- Students will know that the standard normal distribution has mean 0 and standard distribution 1. - Students will know that if $X \sim N\left(\mu, \sigma^{2}\right)$ is a normal distribution with mean μ and standard deviation σ then you can code X using the formula $Z=\frac{X-\mu}{\sigma}$ where the resulting z-values will be normally distributed with mean 0 and standard deviation 1. - Students will know that for the standard normal curve $Z \sim N\left(0,1^{2}\right)$ the probability $p(Z<a)$ is sometimes written as $\Phi(a)$. - Students will know how to find the probabilities of a standardised normal distribution. - Students will know how to find a z value given a probability.		Students need to know how to use the normal distribution to find probabilities. Students need to know the shape of a normal distribution curve	
Lesson objective : To learn how to find the mean and standard deviation.	- Students will be able to find the mean given the probability. - Students will be able to find the standard deviation given the probability - Students will be able to find the mean and standard deviation given two probabilities.		Students will need to know how to standardise a normal distribution Students will need to know how to find a Z value	

Lesson objective : To lear
how to approximate a
binomial distribution.

Students will know that

- Students will know that if n is large and p is close to 0.5 , then the binomial distribution $X \sim(n, p)$ can be approximated by the normal distribution if $X \sim N\left(\mu, \sigma^{2}\right)$ where $\mu=n p$ and $\sigma=\sqrt{n p(1-p)}$
- Students will know to approximate the binomial distribution using normal distribution.
- Students will know how to estimate probabilities by approximating probabilities
- Students will know how to apply a continuity correction.

