

Knowledge Rich Curriculum Plan

Course/Unit

Lesson/Learning Sequence	Intended Knowledge: Students will know that	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that	Assessment
To learn how to use vectors in 3D and To learn how to solve geometric problems involving vectors.	 Students will know what unit vectors are Students will know how to use vector arithmetic c in 3D Students will know how o find the magnitude of a vector in 3D Students will know how to find the angle between vectors in 3D Students will know how to solve geometric problems in 3D 		Students will need to know how to use formula Students will need to have a knowledge of differentiation Students will need to know trigonometric identities.	

Students will know how to use the trapezium rule to approximate integration.	 Students will know that if you cannot integrate a function algebraically, you can use a numerical method to approximate the area beneath a curve. Students will know that to approximate the area given by ∫_a^b ydx you can divide the area into n equal strips. Each strip will be of width h where h = b-a/n Students will know that ∫_a^b ydx ≈ 1/2 h(y₀ + 2(y₁ + y₂ + y_{n-1}) + y_n) where h = b-a/n and y_i = f(a + ih) Students will know if there answer is an overestimate (convex) or underestimate 	Students will need to know the area of a trapezium. Students will need to know how to substitute into a formula Students will need to know how to use radians.
--	--	--