The Sutton Academy

Knowledge Rich Curriculum Plan

Year 13 Trig and modelling

Lesson Objective: To learn how to find and use addition formulae.

will know that

- Students will know that $\sin (A+B) \equiv \sin A \cos B+\cos A \sin B$
- Students will know that $\sin (A-B) \equiv \sin A \cos B-\cos A \sin B$
- Students will know that $\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$
- Students will know that $\cos (A-B) \equiv \cos A \cos B+\sin A \sin B$
- Students will know that $\tan (A+B) \equiv \frac{\tan A+\tan B}{1-\tan A \tan B}$
- Students will know that $\tan (A-B) \equiv \frac{1-\operatorname{tanAtan} B}{1+\operatorname{tanAtan} B}$
- Students will know how to derive the addition formulae from diagram
- Students will be able to prove negative addition formulae, by replacing B with -b
- Students will know how to solve basic problems using the addition formulae.
- Students will know how to find $\sin A$ when given $\cos A$
- Students will know how to find $\cos A$ when given $\sin A$
- Students will need to know how to solve problems using the addition formulae
- Students will need to know how to find values using the addition formulae.

addition formulae to find

 exact values of trigonometric functions of different angles.In order to know this students, need to already know that
Students will need to have basic understanding of right angled

trigonometry.

Students will need know that $\operatorname{Tan} x=\operatorname{Sin} x / \operatorname{Cos} x$
Students will have a knowledge of algerbraic fractions.
Students will need to know basic angle knowledge.

Students will need to know that $\sin (A+B) \equiv \sin A \cos B+\cos A \sin B$

Students will need know that $\sin (A-B) \equiv \sin A \cos B-\cos A \sin B$
Students will need know that $\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$
Students will need to know that $\cos (A-B) \equiv \cos A \cos B+\sin A \sin B$ Students will need to I know that $\tan (A+B) \equiv \frac{\tan A+\tan B}{1-\tan A \tan B}$
Students will need to know that $\tan (A-B) \equiv \frac{\tan A \tan B}{1+\tan \tan B}$

Students need to know exact trig,
Students need to know the addition formulae.
Students need to know that $\cos ^{2} x+\sin ^{2} x=1$
Students need to know the cosine rule.

Students will know that $\cos 2 A=\cos ^{2} x-\sin ^{2} x$

- Students will know that $\tan 2 A=2 \tan A / 1-\tan ^{2} A$
- Students will know to use the double angle formula to write trig sums as a single trigonometric ratio
- Students will know how to express y in terms of x, when given x and y equal to trigonometric expressions.
- Students will know how to find a double angle, when given a value of cosx or sinx
- Students will know how to use the addition formulae to prove the double angle formulae.

To learn how to solve trigonometric equations using the addition and

Students will learn how to solve equations using the addition formulae

- Students will know how manipulate the addition formula to solve equations. double-angle formulas.

To learn how to solve trigonometric equations using the addition and double-angle formulas 2.

- "Students will learn how to solve equations using the double angle formulae.
- Students will know how manipulate the double angle formula to solve equations.
- Students will know how to solve trigonometric equations for any given domain

In order to know this students, need to already know that.
Students will need know how to find different values of \sin , \cos and tan Students will need to know know how to solve quadtratic equations. Students will need to know trigonometric identities.
Students will need to know how to find different values of \sin , \cos and tan
Stduenyts will need to know how to use the double angle formulae.

- Students will know that asin $x \pm b \cos x$ can be expressed in the form $R \sin (x \pm \alpha)$
- Students will know that acos $x \pm b \sin x$ can be expressed in the form $R \cos (x \pm \alpha)$
- Students will know how to express $a \cos x \pm b \sin x$ can be expressed in the form $R \cos (x \pm \alpha)$
- Students will know how to express a asinx $\pm b \cos x$ can be expressed in the form $R \sin (x \pm \alpha)$
- Students will know how to solve trigonometric equations using $a \sin x \pm b \cos x$ can be expressed in the form $R \sin (x+\alpha)$
- Students will know how to prove trigonometric identities using the double angle formulae
- Students will know prove trigonometric identities using the addition formulae.
- Students will know prove trigonometric identities using facts for cot, sec, and cosec.

		tan Stduenyts will need to know how to use the double angle formulae.
To learn how to use the addition formulae to simplify trigonometric expressions.	- Students will know that asin $\pm \pm b \cos x$ can be expressed in the form $R \sin (x \pm \alpha)$ - Students will know that acos $\pm \pm b \sin x$ can be expressed in the form $R \cos (x \pm \alpha)$ - Students will know how to express acosx $\pm b \sin x$ can be expressed in the form $R \cos (x \pm \alpha)$ - Students will know how to express a asin $x \pm b \cos x$ can be expressed in the form $R \sin (x \pm \alpha)$ - Students will know how to solve trigonometric equations using asin $x \pm b \cos x$ can be expressed in the form $R \sin (x \pm \alpha)$	Students need to know the addition formulae. Students need to know $\cos ^{2} x+\sin ^{2} x=1$
To learn how to prove trigonometric identities.	- Students will know how to prove trigonometric identities using the double angle formulae - Students will know prove trigonometric identities using the addition formulae. - Students will know prove trigonometric identities using facts for cot, sec, and cosec.	Students will need know how to find different values of sin, cos and tan Students will need to know know how to solve quadratic equations. Students will need to know trigonometric identities. Students will need to know how to find different values of sin, cos and tan Students will need to know how to use the double angle formulae.
To learn how to model with trigonometric functions.	- Students will know how to model with trigonometric functions using R $\sin (x+a)$ - Students will know how to model with trigonometric functions using Rsin $(x-a)$ - Students will know how to model with trigonometric functions using $R \cos (x+a)$ - Students will know how to model with trigonometric functions using $\operatorname{Rcos}(x-a)$	Students will need know how to find different values of sin, cos and tan Students will need to know know how to solve quadratic equations. Students will need to know trigonometric identities. Students will need to know how to find different values of sin, cos and tan Stduenyts will need to know how to use the double angle formulae.

on

