The Sutton Academy

Knowledge Rich Curriculum Plan

Year 7 Core - Algebraic Expressions, Equations and Inequalities

Lesson/Learning Sequence	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to simplify algebraic expressions by collecting like terms.	- Students will know that like terms are variables (such as x or y) that are the same. E.g. $2 x$ and x are like terms, but x and y are not like terms. - Students will know that we can only add or subtract like terms. - Students will know how to collect like terms with single terms such as $y+y+y=3 y$. - Students will know how to collect like terms with terms multiplied by an integer bigger than one. e.g $2 b+3 b=5 b$ - Students will know how to collect like terms involving multiple terms. E.g. $2 x+7 y+4 x+$ $6 y=6 x+13 y$ - Students will know that when adding or subtracting terms with same power, the power must stay the same. E.g. $x^{2}+x^{2}=2 x^{2}$ - Students will know how to collect like terms involving powers. E.g. $4 x+5 x^{2}-x+6 x^{2}=$ $3 x+11 x^{2}$ Opportunity for challenge: - Students will know how to collect like terms with composite variables. e.g. $2 a b+3 a b=5 a b$	Algebraic Expression - A collection of variables and/or integers without an equal's sign. It cannot be solved.	- Students need to know what an expression is. - Students need to know how to add and subtract integers.	Mini-Assessment 5
To learn how to simplify algebraic expressions.	- Students will know that when multiplying algebraic terms together they must write each number side by side. E.g. $4 \times b=4 b$ - Students will know how to multiply with single terms such as $y \times y \times y=y^{3}$. - Students will know how to multiply algebraic expressions involving multiple letters and integers. E.g. $4 \times b \times c=4 b c$ or $4 b \times 3 c=12 b c$ - Students will know how to multiply algebraic expressions involving the same letter. E.g. $5 \times g \times g=5 g^{2}$ - Students will know how to simplify algebraic expressions involving multiplication by correctly applying the index laws. - Students will know that when dividing algebraic terms, they must write it as a fraction. E.g. $b \div$ $4=\frac{b}{4}$ - Students will know how to divide simple algebraic expressions. E.g. $\frac{4 t}{2}=2 t$ or $\frac{6 t}{2 t}=3$ - Students will know how to simplify algebraic expressions involving division by correctly applying the index laws. Opportunity for challenge: - Students will know how to simplify algebraic expressions involving brackets by correctly applying the index laws.		- Students need to know how to multiply and divide integers. - Students need to know how to square integers.	Mini-Assessment 5
To learn how to expand single brackets.	- Students will know how to expand single brackets by multiplying a single integer term over a bracket. E.g. $2(x+3)$ - Students will know that in order to fully expand a single bracket they must multiply the integer on the outside of the bracket to every term inside the bracket. - Students will know how to expand single brackets by multiplying an algebraic term over a bracket. E.g. $x(x-4)$ Opportunity for challenge: - Students will know how to expand single brackets by multiplying multiple terms over a bracket. e.g. $2 a b(4 a+b)$	Expand - in maths, expand means multiply out	- Students need to know how to multiply algebraic expressions. - Students need to know how to use index laws involving multiplications.	Mini-Assessment 5

Lesson/Learning Sequence	Intended Knowledge: Students will know that...	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to expand two brackets and collect like terms.	- Students will know how to expand multiple single brackets and simplify the answer by collecting like terms with a mixture of positive and negative values. Opportunity for challenge: - Students will know how to expand multiple single brackets involving index laws and then collect the like terms.		- Students need to know how to expand brackets.	Mini-Assessment 5
To learn how to factorise expressions into single brackets.	- Students will know how to recognise common factors of algebraic terms. - Students will know how to factorise algebraic expressions into a single bracket by taking out common numerical factors. Opportunity for challenge: - Students will know how to factorise algebraic expressions into a single bracket by taking out common algebraic factors.	Factorise - put back into brackets by bringing common factors outside	- Students need to know how to multiply and divide algebraic expressions. - Students need to know how to use index laws.	Mini-Assessment 5
To learn how to substitute numbers into expressions and formulae.	- Students will know that substitute means putting numbers in place of letters to calculate the value of an expression. - Students will know how to substitute positive and negative integers into simple algebraic expressions. - Students will know that once a substitution has taken place then the order of operations applies. - Students will know how to substitute positive and negative integers into simple formulae. Opportunity for challenge: - Students will know how to positive and negative numbers into worded formulae.	Substitution - the action of replacing someone or something with another person or thing. In algebra "substitution" means putting numbers where the letters are in an algebraic expression	- Students need to know how to use the order of operations.	Mini-Assessment 5
To learn how to solve one step linear equations.	- Students will know that function machines are used to apply operations in a given order to a value known as the input. - Students will know that the final value produced by a function machine is known as the output. - Students will know how to use function machines to complete one step operations. - Students will know how to use inverse operations to find an input using the output. - Students will know how to use algebraic methods to solve one step linear equations involving addition and subtraction to find an integer solution. E.g. $x+7=10$ and $y-4=8$ - Students will know how to use algebraic methods to solve one step linear equations involving multiplication to find an integer solution. E.g. $3 x=18$ - Students will know how to use algebraic methods to solve one step linear equations involving fractions to find an integer solution. E.g. $\frac{x}{3}=2$	Solve - find an answer Equation - A mathematical statement that two amounts, or groups of symbols representing an amount, are equal: Example $3 x-3=15$ Linear Equation - an equation between two variables that can be written in the form $y=m x+c$. Linear equations give a straight line when plotted on a graph.	- Students need to know how to add, subtract, multiply and divide integers.	Mini-Assessment 5
To learn how to solve two step linear equations.	- Students will know how to use function machines to complete two step operations. - Students will know how to solve simple two step linear equations with one unknown to find an integer solution. e.g. $2 x+3=15$ - Students will know how to solve two step linear equations involving fractions. E.g. $\frac{x}{2}+3=4$ Opportunity for challenge: - Students will know how to solve equations involving a bracket. E.g. $2(4 x+6)=10$		- Students need to know how to solve one step equations involving addition, subtract and multiplication. - Students need to know how to use a function machine to complete one step operations.	Mini-Assessment 5

Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to list integers that satisfy an inequality.	- Students will know that > means greater than. - Students will know that < means less than. - Students will know that \geq means greater than or equal to. - Students will know that \leq means less than or equal to. - Students will know how to use inequality signs to show inclusive and exclusive inequalities. - Students will know that inclusive means inequalities that concerns the symbols \leq, \geq. - Students will know that exclusive means inequalities that concerns the symbols $>,<$. - Students will know how to list some integers that satisfy an inequality. E.g. $x>4$ or $x \leq 9$. - Students will know how to list integers that satisfy an inequality. e.g. $-2 \leq x<3$	Inequality - a symbol which makes a non-equal comparison between two numbers or other mathematical expressions e.g. $>,<, \geq$ and \leq Integer - whole number	- Students need to know how to order numbers.	Mini-Assessment 5
To learn how to represent and interpret inequalities on number lines.	- Students will know that < and > are represented by an open circle. - Students will know that \leq and \geq are represented by a closed circle. - Students will know how to represent inequalities such as $x \geq 3$. - Students will know that an arrow must be drawn to the end of the number line. - Students will know how to represent inequalities such as $-1<x \leq 3$. - Students will know that a line must connect both circles. - Students will know how to write linear inequalities to represent a set shown on a number line such as $x<5$ and $2 \leq x<7$.		- Students need to know how to list integers that satisfy an inequality.	Mini-Assessment 5

