Knowledge Rich Curriculum Plan Year 7 Support – Measures, 2D Shapes and Angles | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: Feedback | |--|--|--|--|---| | To learn how to convert metric units for length. | Students will know how to convert units for length including mm, cm, m, km. | Convert – change a value from one form to another Metric –A system of measurement that uses the meter, litre, and gram as base units of length, volume and mass | Students need to know how to multiply and divide by 10, 100 and 1,000. | kilometres metres centimetres millimetres ÷ 1000 ÷ 100 ÷ 10 Going from larger to smaller units (purple arrows): • Kilometres to metres: multiply by 1000 (because 1 kilometre = 1000 metres) • Metres to centimetres: multiply by 100 (because 1 metre = 100 centimetres) • Centimetres to millimetres: multiply by 10 (because 1 centimetre = 10 millimetres) Going from smaller to larger units (orange arrows): • Millimetres to centimetres: divide by 10 • Centimetres to metres: divide by 100 | | To learn how to convert metric units for mass. | Students will know how to make simple conversions between units of mass including mg, g, kg, tonnes. | Mass – the weight of an object | Students need to know how to multiply and divide by 10, 100 and 1,000. | Metres to kilometres: divide by 1000 x 1000 x 1000 x 1000 x 1000 x 1000 This diagram shows how to convert between different units of mass in the metric system: tonne, kilogram (kg), gram (g), and milligram (mg). Converting from larger to smaller units (red arrows, multiply): Tonne to kilogram: multiply by 1,000 (1 tonne = 1,000 kilograms) Kilogram to gram: multiply by 1,000 (1 kilogram = 1,000 grams) Gram to milligram: multiply by 1,000 (1 gram = 1,000 milligrams) Converting from smaller to larger units (blue arrows, divide): Milligram to gram: divide by 1,000 Gram to kilogram: divide by 1,000 Kilogram to tonne: divide by 1,000 Kilogram to tonne: divide by 1,000 | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |---|---|--|--|---|----------| | To learn how to | Students will know how to make simple conversions | Capacity – the maximum | Students need to know how | | | | To learn how to convert metric units for volume. | Students will know how to make simple conversions between units of volume including ml, cl, l. | Capacity – the maximum amount that something can contain. Volume – the amount of space inside a 3D object | Students need to know how to multiply and divide by 10, 100 and 1,000. | x1,000 x10 x10 x100 x100 x100 x100 x100 | | | | | | | | | | To learn how to recognise and identify 2D shapes. | Students will know the properties of different 2D shapes and will be able to identify them. Students will be able to identify regular and irregular shapes. Students will know how to recognise and draw the different types of triangle: isosceles, scalene, right-angled, equilateral. Opportunity for challenge: Students will know how to name and sketch all types of quadrilaterals and their properties including; square, rectangle, parallelogram, rhombus, kite, trapezium. | Polygon — a closed shape with straight sides Regular Polygon — A polygon where all sides are the same length and all angles are equal Irregular Polygon — A polygon where all sides are the same length and all angles are not equal Isosceles Triangle — a triangle with two equal sides and two equal angles Equilateral Triangle — a triangle with three equal sides and three equal, 60° angles Scalene Triangle — a triangle with no equal sides or angles Quadrilateral — a four-sided polygon, having four edges and four corners Perpendicular — at a right angle to Parallel — parallel lines are two lines that are side by side and | Students need to be able to identify triangles from a selection of 2D shapes. (They may not be able to name them.) | | | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |----------------------|---|--|--|--|----------| | | | have the same distance | | | | | | | continuously between them | | | | | | | The Fryer model can be used | | | | | | | here. | To learn how to | Students will know how to identify and label lines | Symmetry – the quality of | Students need to know how | *Tracing paper may be useful for this lesson* | | | identify lines of | of symmetry in 2D shapes. | being made up of exactly | to identify regular polygons | | | | symmetry and | Students will know that a shape is symmetric if it | similar parts facing each other | and irregular polygons. | | | | rotational symmetry. | can be divided into two or more identical pieces | or around an axis. | | | | | | that are arranged in an organized fashion. | Rotational symmetry – A shape | | | | | | Students will know how to identify the order of | has rotational symmetry when | | | | | | rotational symmetry of any 2D shape by rotating | it can be rotated and it still | | | | | | the shape 360° (this can be done with the use of | looks the same | | | | | | tracing paper). | Order of Rotational Symmetry | | | | | | | – order of rotational symmetry | | | | | | | of a shape is the number of | | | | | | | times it can be rotated around | | | | | | | a full circle and still look the | | | | | | | same | | | | | | | The Fryer model can be used | | | | | To learn how to | a Students will know how to identify each type of | here. Estimate – roughly calculate or | a Ctudents need to identify | | | | recognise different | Students will know how to identify each type of angle by sight. | judge the value, number, | Students need to identify
different 2D shapes. | | | | types of angles and | Students will know how to accurately estimate | quantity, or extent of. | different 2D shapes. | | | | estimate angles. | angles based on their knowledge of the types of | Acute angle – An angle that is | | | | | | angles. | less than 90° | | | | | | angles. | Obtuse angle – An angle that is | | | | | | | more than 90° but less than | | | | | | | 180° | | | | | | | Reflex angle – An angle that is | | | | | | | more than 180° but less than | | | | | | | 360° | | | | | | | Right angle – An angle that is | | | | | | | exactly 90° | | | | | | | Cultural capital. | | | | | | | | | | | | To learn how to | Students will know how to use a protractor to | Protractor – an instrument | Students need to know how | Step to Success – Measuring angles | | | measure and draw | measure an angle. | used for measuring angles | to identify different types of | Step 1: Place the centre of the protractor on the corner of the angle – | | | angles. | Students will know how to draw an angle. | | angles. | take care and be accurate with this! | | | | Opportunity for challenge: | | | Step 2: Match up the line on the protractor with the base line of the | | | | Students will know how to measure reflex angles. | | | angle. | | | | Students will know how to draw reflex angles. | | | Step 2: Read off the size of the angle you on the protractor – | | | | | | | remember to start at 0 to ensure you use the correct set of numbers | | | | | | | on the protractor. | | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |----------------------|--|-------------------|-----------------------------|---|----------| | | | | | Step 3: Check your answer looks right: | | | | | | | • If you are measuring an acute angle you should have an answer less than 90°. | | | | | | | If you are measuring an obtuse angle you should have an answer | | | | | | | more than 90° but less than 180°. | | | | | | | If you are measuring a reflex angle you should have an answer | | | | | | | more than 180°. | | | | | | | Step to Success – Drawing angles | | | | | | | Step 1: Draw a base line if one is not provided for you. | | | | | | | Step 2: Place the centre of the protractor on the end of the line. If you | | | | | | | want your angle to be on the left go to the left end of the line and if | | | | | | | you want your angle to be on the right then go to the right end of the | | | | | | | line. | | | | | | | Step 3: Start from 0 on your line and follow it round until you get to the required measurement and make a mark. | | | | | | | Step 4: Connect the mark with the end of the line that you measured | | | | | | | from. | | | | | | | Step 5: Check your answer looks right: | | | | | | | • If you are drawing an angle less than 90° then your answer should | | | | | | | look like an acute angle. | | | | | | | • If you are drawing an angle more than 90° but less than 180° your | | | | | | | answer should look like an obtuse angle. | | | | | | | If you are drawing an angle more than 180° your answer should look | | | | | | | like a reflex angle. | | | To learn how to find | Students will know how to find missing angles in | | Students need to know | Steps to Success – Angles in a right angle | | | missing angles in | right angles | | angles rules. | Step 1: Add up the angles that you know. | | | right angles and on | Students will know how to use angle facts to find | | Students need to know how | Step 2: Subtract the angles known from 90°. | | | straight lines. | missing angles on straight lines. | | to add and subtract using | Step 3: Write, 'Angles in a right angle add up to 90° as your reason. | | | | | | the column method. | | | | | Encourage students to write reasons for every | | | Steps to Success – Angles on a straight line | | | | missing angle that they find. | | | Step 1: Add up the angles that you know. Step 2: Subtract the angles known from 180°. | | | | | | | Step 3: Write, 'Angles on a line add up to 180°' as your reason. You | | | | | | | may also need to write any other reasons that you have used to find | | | | | | | that angle. | | | | | | | | | | To learn how to find | Students will know how to find vertically opposite | | Students need to know how | Steps to Success – Angles at a point | | | missing angles at a | angles. | | to find missing angles on a | Step 1: Add up the angles that you know. | | | point. | Students will know how to use angle facts to find | | straight line. | Step 2 : Subtract the angles you know from 360°. | | | | missing angles at a point. | | | Step 3 : Write: 'angles at a point add up to 360°', as your reason. You | | | | | | | may also need to write any other reasons that you have used to find | | | | Encourage students to write reasons for every | | | that angle. | | | | missing angle that they find. | | | | | | | | | | | | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |----------------------|---|--|------------------------------|--|----------| | To learn how to find | Students will know how to use angle facts to find | Isosceles Triangle – a triangle | Students need to know how | Steps to Success – Angles in a triangle | | | missing angles in | the missing angles in triangles. | with two equal sides and two | to add and subtract using | Step 1: Add up the angles you know. | | | triangles. | Opportunity for Challenge: | equal angles | the column method. | Step 2: Subtract the known angles from 180°. | | | | Students will know how to use angle facts to find | Equilateral Triangle – a triangle | | Step 3: Write: 'Angles in a triangle add upto 180°' as your reason. You | | | | missing angles in special triangles. | with three equal sides and | | also need to write any other reasons that you have used to find that | | | | | three equal, 60° angles | | angle. | | | | Encourage students to write reasons for every | Scalene Triangle – a triangle | | Steps to Success – Angles in special triangles | | | | missing angle that they find. | with no equal sides or angles | | Step 1: Identify the type of triangle and think about what makes this | | | | | | | triangle different or special compared to normal ones. | | | | | | | Step 2: You may be able to identify an angle without any calculation – | | | | | | | place this on the diagram. If this is not the case then go to step 3. | | | | | | | Step 3: Add up the angles you know. | | | | | | | Step 4: Subtract the known angles from 180°. You be required to split | | | | | | | this in half for some isosceles angles. If this is not the case then go | | | | | | | straight to step 5. | | | | | | | Step 5: Write: 'Angles in a triangle add upto 180°' as well as one of the | | | | | | | reasons below. | | | | | | | Two angles in an isosceles triangle are equal. | | | | | | | The three angles in an equilateral triangle are equal | | | To learn how to find | Students will know how to use angle facts to find | Quadrilateral – a four-sided | Students need to know how | Steps to Success – Angles in a quadrilateral | | | missing angles in | the missing angles in quadrilaterals | polygon, having four edges and | to find missing angles in a | Step 1: Add up the angles you know. | | | quadrilaterals. | Opportunity for Challenge: | four corners | triangle. | Step 2: Subtract the known angles from 360°. | | | | Students will know how to solve multi-step | | | Step 3: Write: 'Angles in a quadrilateral add upto 360°' as your reason. | | | | problems involving angles in quadrilaterals and | | | You also need to write any other reasons that you have used to find | | | | other basic angle rules (straight lines, around a | | | that angle. | | | | point etc.). | | | | | | | F | | | | | | | Encourage students to write reasons for every | | | | | | | missing angle that they find. | | | | | | To learn how to | Students will know how to label the radius, | Circumference – the perimeter | Students need to know how | | | | identify parts of a | diameter, circumference and centre of a circle. | of a circle | to draw an accurate straight | | | | circle and draw | Students will know how to draw the radius. | Perimeter – the distance | line using a ruler. | | | | circles accurately. | diameter, circumference and centre of a circle | around the outside of a shape | | | | | | Students will know that the diameter is double the | Radius – a straight line from | | | | | | size of the radius or the radius is half the size of the | the centre to the | | | | | | diameter. | circumference of a circle or | | | | | | Students will know that the circumference is the | sphere | | | | | | distance around the circle and is a measure of | Diameter – a straight line | | | | | | length. | passing from side to side | | | | | | • Students will know how to use a pair of compasses | through the centre of a body | | | | | | to accurately draw a circle when given the radius or | or figure, especially a circle or | | | | | | diameter. | sphere | | | | | | Opportunity for challenge: | | | | | | | Students will know how to label the tangent, | | | | | | | chord, segment and sector of a circle. | | | | | | | chora, segment and sector of a tiltle. | | <u> </u> | | | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |--------------------------------------|---|------------------------------|---|--|----------| | | Students will know how to draw the tangent, | | | | | | | chord, segment and sector of a circle. | 0 1 1 0 11 | | 0 | | | To learn how to construct triangles. | Students will know how to construct SAS triangles | Construct – Build or make. | Students need to know how | Steps to Success- Constructing SAS Triangles Step 1. Deput he have blee a papell and a rules to draw the base | | | construct triangles. | using a ruler and protractor. | In maths, construct means to | to draw straight lines | Step 1: Draw the base. Use a pencil and a ruler to draw the base. | | | | Students will know how to construct ASA triangles | draw a shape, line or angle | accurately with a ruler. • Students need to know how | A 7cm B | | | | using a ruler and protractor. | accurately using a compass | to draw angles using a | Step 2: At one end point measure one angle. At point B use a | | | | | and rule | protractor. | protractor to measure the angle 40°, make a mark. | | | | | | protructor. | productor to measure the ungle to , make a mark. | | | | | | | • | | | | | | | | | | | | | | 40° | | | | | | | $A = \frac{40^{\circ} \ell}{7cm} B$ | | | | | | | Step 3: At the end point draw a line. Use a ruler to measure 5cm from | | | | | | | point B, while making sure that the ruler lines up with the mark you | | | | | | | made in step 2. | | | | | | | 5 am | | | | | | | Sen | | | | | | | 40° | | | | | | | A 7cm B | | | | | | | Step 4: Complete the triangle. Use your ruler to draw a straight line | | | | | | | from point A to the end of the 5cm line drawn in step 3. | | | | | | | c - | | | | | | | | | | | | | | 5cm | | | | | | | 40° | | | | | | | A 7cm B | | | | | | | Steps to Success- Constructing ASA Triangles | | | | | | | Step 1: Draw the base. Use a pencil and a ruler to draw the base. | | | | | | | A ———————————————————————————————————— | | | | | | | Step 2: At one end point measure one angle. At point A use a | | | | | | | protractor to measure the angle 50°, make a mark and then draw a | | | | | | | straight line from point A through the mark. Make this line long. | | | | | | | Straight line from point A through the mark, wake this line long. | | | Lesson objective | Intended Knowledge: | Tiered Vocabulary | Prior Knowledge: | Steps to Success: | Feedback | |------------------|---------------------|-------------------|------------------|--|----------| | | | • | | No. 10 Per la Contraction de l | | | | | | | Step 3: At the other end point measure the second angle. At point B use a protractor to measure the angle 30°, make a mark and then draw a straight line from point B though the mark. | | | | | | | draw a straight line from point is though the mark. | | | | | | | 8cm | | | | | | | Step 4: Complete the triangle. Make sure that the two lines intersect each other to form the triangle. Leave all construction lines visible! | | | | | | | $A = \frac{C}{50^{\circ}} = \frac{30^{\circ}}{8cm} B$ | | | | | Mi | ni Assessment 8 | -1 | 1 |