Knowledge Rich Curriculum Plan

Year 8 Core - Sequences and Graphs

Lesson Objective	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to continue sequences of diagrams and numbers and identify and use the term-to-term rule	- Students will know how to find the next terms in pattern sequences - Students will know how to continue linear sequences to find subsequent terms - Students will know how to continue geometric sequences to find subsequent terms - Students will know how to continue other simple sequences - Students will know how to identify the term to term rule for an arithmetic sequence - Students will know how to identify the term to term rule for a geometric sequence - Students will understand the difference between arithmetic and geometric sequences - Students will know how to use ascending/descending to describe sequences. - Students will know that triangular numbers are numbers that make a triangular dot pattern. E.g. 1,3,6,10,15 - Students will know how to recognise and continue Fibonacci sequences - Students will know how to continue a quadratic sequence - Students will know how to find missing terms in a sequence given the term-to-term rule - Students will know how to find missing terms within a sequence by first finding the term-to-term rule	Sequence - a particular order in which related things follow each other. Ascending - going up Descending - going down Linear or Arithmetic Sequence - a number pattern which increases (or decreases) by the same amount each time Geometric Sequence - a sequence made by multiplying by the same value each time Fibonacci Sequence - a sequence of numbers in which each number is the sum of the two preceding numbers. The simplest is the series $1,1,2,3,5,8$, etc. Triangular Numbers - any of the series of numbers (1, $3,6,10,15$, etc.) obtained by continued adding of the natural numbers 1, 2, 3, 4, 5, etc. Quadratic - involving a squared algebraic term but no other power higher than 2	- Students should already know how to continue a numerical, linear sequence and a pattern sequence - Students should already know how to identify the term-to-term rule for a sequence	Mini-Assessment 6
To learn how to generate a sequence from the nth term and find the nth term for a sequence	- Students will know how to generate a linear sequence using the nth term - Students will understand the relationship between the nth term of a sequence and the terms in a sequence, for example a ' $2 n$ ' sequence goes up in 2 s etc - Students will know how to find the nth term of a linear sequence Opportunity for Challenge: - Students will know how to generate a quadratic sequence from its nth term - Students will know how to find the nth term of a pattern sequence.	$\begin{aligned} & \hline \text { Generate - produce or create. } \\ & \text { Substitute - use or add in place of } \end{aligned}$	- Students will need to know how to substitute numbers into linear formulae	Mini-Assessment 6
To learn how to find and use the nth term of a linear sequence	- Students will know how to find the nth term of a linear sequence. - Students will know how to find the nth term of a pattern sequence. - Students will know how to identify whether a term can be in a sequence given its nth term by forming and solving a linear equation - Students will know how to find and use the nth term to determine whether a number will be in a linear sequence	Nth Term - a formula that enables us to find any term in a sequence. The ' n ' stands for the term number	- Students will need to know how to solve linear equations	Mini-Assessment 6

Lesson Objective	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to write and plot coordinates in all four quadrants	- Students will need to know that the horizontal axis is the x-axis and that the vertical axis is the y-axis. - Students will know how to plot coordinates in all four quadrants. - Students will know how to write the coordinates of a point plotted in any of the four quadrants - Students will know how to solve shape problems involving plotting coordinates - Students will know how to plot and draw graphs that are parallel to either the x - or y-axis (equations in the form $y=a, x=a$) - Students will know how to plot the graphs of $y=x$ and $y=-x$ Opportunity for challenge: - Students will know how to plot graphs in the form $\mathrm{y}=\mathrm{x}+\mathrm{c}$ or $\mathrm{y}=\mathrm{x}-\mathrm{c}$	Coordinate - two numbers or sometimes a letter and a number, that locate a specific point on a grid. They are written in the form (x, y) most commonly. Vertical - something that is vertical stands or points straight up Horizontal - something that is arranged sideways, parallel to the horizon, like a person lying down Quadrant - one of the four quarters of the coordinate plane	- Students will need to know how to read from a number line	Mini-Assessment 6
To learn how to draw straight line graphs	- Students will know how to plot graphs in the form $y=x+c$ or $y=x-c$ - Students will know how to plot graphs in the form $y=m x$ - Students will know how to plot straight line graphs in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ by first completing a given table of values - Students will know how to plot straight line graphs in the form $y=m x+c$ by constructing their own table of values Opportunity for challenge: - Students will know how to plot and draw graphs of straight lines in the form $x+y=c$	Substitute - use or add in place of	- Students should already know how to substitute positive and negative integers into formulae - Students will know how to plot coordinates	Mini-Assessment 6
To learn how to interpret the equation of a straight line and calculate gradient	- Students will know how to identify the gradient and y-intercept of a straight line given the equation in the form $y=m x+c$ - Students will know how to calculate gradient between two pairs of coordinates. - Students will know that gradient $=\frac{\text { change in } y}{\text { change in } x}$	Gradient - steepness. The gradient of a line tells us how steep the line is. Intercept - cross Y-intercept - the y-intercept tells us where a graph crosses the y -axis, this where $\mathrm{x}=0$	- Students will need to know how draw a straight line graph.	Mini-Assessment 6
To learn how to find the equation of a straight line	- Students will know how to identify the gradient and y-intercept of a straight line given the equation. - Students will know that gradient $=\frac{\text { change in } y}{\text { change in } x}$ - Students will know that the equation of a straight line can be written in the form $y=m x+c$ where m tells us the gradient of the line and c tells us the y intercept - Students will know how to find the equation of a given straight line	X-intercept - the x -intercept tells us where a graph crosses the x-axis, this where $y=0$ Gradient - steepness. The gradient of a line tells us how steep the line is.	- Students need to know how to find the gradient from a set of points.	Mini-Assessment 6
To learn how to draw quadratic graphs	- Students will know how to generate points for a quadratic graph in the form y $=a x^{2}+b x+c$ where $a=1$ and b and c are any integer including 0 , with and without a calculator. - Students will know how to plot a quadratic graph once they have generated the points - Students will know that the points for a quadratic graph should be joined with a smooth curve	Quadratic - An expression or equation where the highest power is 2 . Parabola - the U or \cap shape of a quadratic graph	- Students will need to know how to substitute both positive and negative integers into formulae. - Students will need to know how to draw a straight line graph.	Mini-Assessment 6

