# Knowledge Rich Curriculum Plan 

Year 9 Core - 3D Shapes, Surface Area and Volume

| To learn how to draw plans and elevations of 3D shapes. | - Students will know how to use isometric grids to sketch 3D solids. <br> - Students will identify front, side and plan elevations of 3D solids. <br> - Students will know that an elevation means a 2D drawing of a 3D shape from different viewpoints. <br> - Students will draw the front, side and plan elevations of 3D solids with cubes using a 1 cm grid. <br> - Students will draw the front, side and plan elevations of 3D solids with accurate measurements using a 1 cm grid. <br> Opportunity for challenge: <br> - Students will know how to sketch a 3D solid using the front, side and plan elevations. | Plan - A drawing of something as viewed from above <br> Elevation - the view of a 3D shape when it is looked at from the side or from the front. | - Students need to be able to draw and identify 3D shapes. | Mini-Assessment 11 |
| :---: | :---: | :---: | :---: | :---: |
| To learn how to calculate the surface area of cubes, cuboids and triangular prisms. | - Students will know how to find the surface area of a 3D solid using the net. Students will know that surface area means the total area of the surface of a three-dimensional object. <br> - Students will know that the surface area is the total area of each face of a 3D solid. <br> - Students will know how to find the surface area of cubes. <br> - Students will know how to find the surface area of cuboids. <br> - Students will know how to find the surface area of triangular prisms. <br> Opportunity for challenge: <br> - Students will know how to solve problems involving the surface area of prisms. | Surface area - the total area of all of the faces of a 3D solid added together | - Students need to be able to draw the net of a shape. <br> - Students need to be able to use basic mathematical operations such as multiplication and addition. <br> - Students need to be able to find the area of 2D shapes. | Mini-Assessment 11 |
| To learn how to calculate the surface area of a cylinder. | - Students will know how to find the surface area of compound solids involving prisms. <br> - Students will know that a compound solid means a solid that is made up for 2 or more solids. <br> - Students will know how to find the surface area of cylinders. <br> Opportunity for challenge: <br> - Students will know how to solve problems involving the surface area of cylinders. |  | - Students need to be able to draw the net of a shape. <br> - Students need to know how to find the area and circumference of circles. | Mini-Assessment 11 |
| To learn how to calculate the volume of prisms and cylinders. | - Students will know that the volume is the amount of 3-dimensional space a 3D solid occupies. Students will know that volume means the amount of three-dimensional space something takes up. <br> - Students will know how to find the volume of cubes. <br> - Students will know how to find the volume of cuboids. <br> - Students will know how to find the volume of triangular prisms. <br> - Students will know how to find the volume of compound shapes. <br> - Students will know how to find the volume of cylinders. <br> Opportunity for challenge: <br> - Students will know how to solve problems involving the volume of prisms. | Volume - the amount of space inside a 3D object Prism - A solid object with two identical ends and flat sides | - Students need to know how to multiple and divide numbers. <br> - Students need to be able to find the area of 2D shapes. | Mini-Assessment 11 |
| To learn how to calculate with density, mass and volume. | - Students will know how to calculate density using the mass and volume. <br> - Students will know how to calculate mass using the density and volume. <br> - Students will know how to calculate volume using the density and mass. <br> - Students will know how to calculate the mass, density or volume without converting any units. <br> Opportunity for challenge: <br> - Students will know how to calculate the mass, density or volume converting units when necessary. |  | - Students will need to know how to multiply and divide numbers. <br> - Students will need to know how to substitute values into formulae. | Mini-Assessment 11 |


| Lesson/Learning Sequence | Intended Knowledge: <br> Students will know that.. | Tiered Vocabulary | Prior Knowledge: <br> In order to know this students, need to already know that... | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| To learn how to calculate speed, distance and time. | - Students will know that Speed $=\frac{\text { distance }}{\text { time }}$ <br> - Students will know that Time $=\frac{\text { distance }}{\text { speed }}$ <br> - Students will know that Distance $=$ Speed $\times$ Time <br> - Students will know how to make simple conversions for minutes to decimal hours - they will know that 30 minutes is 0.5 hours and 15 minutes is 0.25 hours. <br> - Students will know how to calculate speed, distance or time given the two other variables including where the time needs to be converted into a decimal number of minutes or hours. <br> Opportunity for challenge: <br> - Students will know how to solve problems involving speed, distance and time. |  | - Students need to know how to convert time between minutes and hours. | Mini-Assessment 11 |
| To learn how to interpret real-life graphs. | - Students will know how to use conversion graphs to do simple conversions with currency. <br> - Students will know how to use conversion graphs to do simple conversions with metric and imperial units. <br> - Students will know how to use conversion graphs to carry out conversions that involve scaling up. <br> - Students will know how to use linear graphs to in order to explore the relationships between costs and variables. <br> - Students will know how to use linear graphs involving money to state a fixed cost. <br> - Students will know how to draw a conversion graph. |  | - Students need to plot and read coordinates. | Mini-Assessment 11 |
| To learn how to interpret a distance-time graph. | - Students will know how to make simple interpretations from a distance-time graph. <br> - Students will know how to find distances and times from a distance-time graph. <br> - Students will know how to complete a distance-time graph from a worded scenario. <br> - Students will know how to draw a complete distance-time graph from a worded scenario. <br> - Students will know how to find the distance by finding the area under the graph. <br> - Students will know how to interpret the speed within each section of the graph by looking at the steepness of the line. <br> Opportunity for challenge: <br> - Students will know how to find the speed within each section of a distance-time graph. |  |  | Mini-Assessment 11 |

