The Sutton Academy

Knowledge Rich Curriculum Plan

Year 9 Core -Perimeter and Area

To learn how to calculat

 the perimeter of 2 D shapes.- Students will know that perimeter is the distance around the shape. - Students will know that for perimeter you find the sum of the lengths of each side including any value not immediately show on the shape
- Students will know that the units used to represent perimeter are mm, cm and m etc
- Students will know that perimeter is a measurement of length.
- Students will know how to calculate the perimeter of a rectangle.
- Students will know how to calculate the perimeter of a triangle.
- Students will know how to calculate the perimeter of a trapezium.
- Students will know how to calculate the perimeter of a parallelogram.
- Students will know how to calculate the perimeter of special triangles.
- Students will know that compound shapes are shapes made up more than one shape - Students will know how to calculate the perimeter of compound shapes.
- Students will know how to solve real life problems involving perimeter.
- Students will know how to use inverse operations to find the missing lengths of shapes when given the perimeter.
-Students will know that area is the space inside the shape.
- Students will know that the units used to represent area are $m m^{2}, \mathrm{~cm}^{2}$ and m^{2} etc. - Students will know how to calculate the area rectangles using the formula $A=$ length \times width.
- Students will know to ignore any additional lengths in the rectangle.
- Students will know how to calculate the area of a triangle using the formula $A=$ $1 / 2$ base \times height.
- Students will know that the base and height are perpendicular to each other in every triangle.
Students will know that the reason we divide by 2 when finding the area of a triangle is because the base \times height would give the area of a rectangle which is double the triangle.
- Students will know to ignore any additional lengths in the triangle.
- Students will know how to calculate area of a parallelogram using the formula $A=$ base \times height.
- Students will know to ignore any additional lengths in the parallelogram.
- Students will know that the base and height are perpendicular to each other in every parallelogram.
- Students will know how to use inverse operations to find the missing lengths of shapes when given the area.
- Students will know how to solve real life problems involving area.
- Students will know how to calculate the area of compound shapes, by separating them in to rectangles or triangle and finding the sum of the areas of each individual shape. - Students will know how to identify the parallel lines in a trapezium.
- Students will know how to calculate the area of a trapezium using the formula $A=$ $1 / 2(a+b) \times$ height, where a and b are the parallel sides of the trapezium. - Students will know how to use inverse operations to find the missing sides of a compound shape.

In order to know this students, need to already know

Students need to know the properties of 2D polygons.

- Students need to know how to add and subtract
numbers.
- Students need to know the different metric units used to measure length.
- Students need to know how to convert between different lengths.

To learn how find the area of compound shapes and trapezia.

Perimeter - the distance around the outside of a shape	- Students need to know the properties of 2D polygons. - Students need to know how to add and subtract numbers. - Students need to know the different metric units used to measure length. - Students need to know how to convert between different lengths.	Mini-Assessment 9
Area - the amount of space inside a 2D shape Quadrilateral - a four-sided shape	- Students need to know the properties of 2D polygons. - Students need to know how to multiply numbers. - Students need to know how to divide by 2.	Mini-Assessment 9
Trapezium - a quadrilateral with one pair of sides parallel.	- Students need to know how to find the area of rectangles. - Students need to know how to find the area of triangles. - Students need to know how to calculate using the order of operations. - Students need to know how to divide by 2. - Students need to know how to substitute in to a formula.	Mini-Assessment 9

	- Students will know how to use inverse operations to find the height or missing side of a trapezium.			
To learn how to find the circumference of a circle.	- Students will know how to calculate the circumference of a circle using the formula $C=$ πd, where d is the diameter. - Students will know how to find the circumference of a circle where only the radius is given by using the formula $C=2 \pi r$, where r is the radius or by finding the diameter by multiplying the radius by 2 and then using the formula $C=\pi d$. - Students will know how to find the circumference of a circle when the diameter or radius is known. (mixture) - Students will know how to calculate the circumference of a circle, without a calculator, giving their answer in terms of π. - Students will know how to calculate the perimeter of a semi-circle by finding the circumference, dividing it by 2 and adding the diameter. - Students will know how to calculate the perimeter of a quarter circle by finding the circumference, dividing it by 4 (or multiply by $\frac{1}{4}$) and adding both radii. - Students will know how to calculate the perimeter of a three-quarter circle finding the circumference, dividing it by 4 , multiplying by 3 (or multiply by $\frac{3}{4}$) and adding the radii. - Students will know how to solve problems involving the circumference of circles.	Circumference - the perimeter of a circle Perimeter - the distance around the outside of a shape Arc - a part of a curve, a part of the circumference of a circle Radius - a straight line from the centre to the circumference of a circle or sphere Diameter - a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere	- Students need to know how to round to a given decimal place or significant figure. - Students need to know that multiplying the radius by 2 will give the length of the diameter. - Students need to know that dividing the diameter by 2 will give the length of the radius. - Students need to that the number π is an irrational mathematical constant. - Students need to know that $\pi=3.14 \ldots$ - Students need to know how to type the π symbol on to a calculator.Students need to know how to round to a given decimal place or significant figure. - Students need to know that multiplying the radius by 2 will give the length of the diameter. - Students need to know that dividing the diameter by 2 will give the length of the radius. - Students need to that the number π is an irrational mathematical constant. - Students need to know that $\pi=3.14 \ldots$ - Students need to know how to type the π symbol on to a calculator.	Mini-Assessment 9
To learn how to find the area of a circle.	- Students will know how to calculate the area of a circle using the formula $A=\pi r^{2}$, where r is the radius. - Students will know how to calculate the area of a circle when a diameter is given by using the formula $A=\pi\left(\frac{d}{2}\right)^{2}$, where d is the diameter or by dividing the diameter by 2 and using the formula $A=\pi r^{2}$. - Students will know how to find the area of a circle when the diameter or radius is known. (mixture) - Students will know how to calculate the area of a circle, without a calculator, giving their answer in terms of π. - Students will know how to calculate the area of a semi-circle by finding the area of the circle and dividing it by 2. - Students will know how to calculate the area of a quarter circle by finding the area of the circle and dividing it by 4 (or multiply by $\frac{1}{4}$) . - Students will know how to calculate the area of a three-quarter circle finding the area dividing it by 4 and multiplying by 3 (or multiply by $\frac{3}{4}$). - Students will know how to solve problems involving the area of circles.	Radius - a straight line from the centre to the circumference of a circle or sphere Diameter - a straight line passing from side to side through the centre of a body or figure, especially a circle or sphere	- Students need to know how to round to a given decimal place or significant figure. - Students need to know that multiplying the radius by 2 will give the length of the diameter. - Students need to know that dividing the diameter by 2 will give the length of the radius. - Students need to that the number π is an irrational mathematical constant. - Students need to know that $\pi=3.14 \ldots$ - Students need to know how to type the π symbol on to a calculator.	Mini-Assessment 9

Lesson/Learning Sequence	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that...	Assessment
To learn how to calculate missing sides using Pythagoras' Theorem.	- Students will know how to find the hypotenuse, using Pythagoras' theorem - Students will know that the hypotenuse is the longest side in a right-angled triangle. - Students will know how to find the shorter sides of the triangle using Pythagoras' theorem. Students will know that they subtract when finding the shorter side. - Students will know how to identify whether they need to add or subtract when using Pythagoras' theorem. They will know that it is important to label the sides.	Hypotenuse - the longest side in a right-angled triangle. It can always be found opposite the right angle Theorem - a statement that has been proved, or can be proved	- Students need to be able to identify right angled triangles. - Students need to be able to use basic mathematical operations. - Students need to be able to solve equations. - Students need to be able to square and square root numbers.	Mini-Assessment 9
To learn how to solve problems using Pythagoras' Theorem.	- Students will know how to use Pythagoras' Theorem to solve problems involving perimeter or area.		- Students need to know how to use Pythagoras' Theorem.	Mini-Assessment 9
To learn how to calculate missing sides in right-angled triangles using trigonometry.	- Students will know the trigonometric ratio sine, cosine and tan. - Students will know how to label the sides of a right-angled triangle; hypotenuse, opposite, adjacent. Students will know hypotenuse to mean, the longest side of a right-angled triangle, opposite to be the side opposite the angle in the question and adjacent being the side next to the angle. - Students will know how to identify the correct trigonometric ratio, by eliminating the side that they do not need. - Students will know how to use the correct trigonometric ratio to find the missing side in a triangle.	Trigonometry - a branch of mathematics that studies relationships between side lengths and angles of triangles Hypotenuse - the longest side in a right-angled triangle. It can always be found opposite the right angle Adjacent - next to, in maths the adjacent side in a right-angled triangle is the side that is adjacent to the angle, forming the angle with the hypotenuse Opposite - for right angled triangles the opposite is the side opposite the angle that we know or are trying to find.	- Students need to be able to rearrange equations. - Students need to know that Pythagoras is used when the problem includes three sides.	Mini-Assessment 9
To learn how to calculate missing angles in rightangled triangles using trigonometry.	- Students will know that to calculate the missing angle in a right-angled triangle using trigonometry they will use the inverse operation. Opportunity for challenge: - Students will know how to use trigonometry to solve problems involving perimeter or area.		- Students need to know how to find the missing sides of a right-angled triangle using trigonometry and Pythagoras' theorem.	Mini-Assessment 9

