Knowledge Rich Curriculum Plan

Year 9 Prime - Sequences and Graphs

Lesson Objective	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to generate a sequence from the nth term and find the nth term for a sequence	- Students will know how to generate a linear sequence using the nth term - Students will know how to generate a quadratic sequence from its nth term - Students will understand the relationship between the nth term of a sequence and the terms in a sequence, for example a ' $2 n$ ' sequence goes up in 2 s etc - Students will know how to find the nth term of a linear sequence - Students will know how to find the nth term of a pattern sequence. - Students will know how to identify whether a term can be in a sequence given its nth term by forming and solving a linear equation - Students will know how to find and use the nth term to determine whether a number will be in a linear sequence	Sequence - a particular order in which related things follow each other. Linear or Arithmetic Sequence - a number pattern which increases (or decreases) by the same amount each time Geometric Sequence - a sequence made by multiplying by the same value each time Generate - produce or create. Substitute - use or add in place of Nth Term - a formula that enables us to find any term in a sequence. The ' n ' stands for the term number	- Students will need to know how to solve linear equations	Mini-Assessment 4
To learn how to draw straight line graphs	- Students will know how to plot straight line graphs in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ by first completing a given table of values - Students will know how to plot straight line graphs in the form $y=m x+c$ by constructing their own table of values - Students will know how to plot and draw graphs of straight lines in the form $x+y=c$ Opportunity for Challenge: - Students will know how to plot and draw graphs of straight lines in the form $a x+b y=$ c	Substitute - use or add in place of Quadrant - one of the four quarters of the coordinate plane	- Students should already know how to plot and draw graphs that are parallel to either the x - or y-axis (equations in the form $y=a$, $x=a$)	Mini-Assessment 4
To learn how to find the equation of a straight line	- Students will know how to identify the gradient and y-intercept of a straight line given the equation. - Students will know how to calculate gradient between two pairs of coordinates. - Students will know that gradient $=\frac{\text { change in } y}{\text { change in } x}$ - Students will know that the equation of a straight line can be written in the form $y=m x$ $+c$ where m tells us the gradient of the line and c tells us the y-intercept. - Students will know how to find the equation of a given straight line.	Intercept - cross Y-intercept - the y-intercept tells us where a graph crosses the y-axis, this where $x=0$ X-intercept - the x -intercept tells us where a graph crosses the x-axis, this where $y=0$ Gradient - steepness. The gradient of a line tells us how steep the line is.	- Students need to know how to write coordinates	Mini-Assessment 4
To learn how to find the equation of a straight line	- Students will know how to find the equation of a straight line given the gradient and a coordinate in the form (x, y) where the x-coordinate is 0 - Students will know how to find the equation of a straight line given the gradient and a coordinate in the form (x, y) where x and y take any integer values - Students will know how to find the equation of a line between two pairs of coordinates by first calculating the gradient between the two points		- Students will need to know how to calculate gradient - Students will need to know how to substitute numbers into formulae	Mini-Assessment 4
To learn how to find the equation of parallel lines	- Students will know that parallel lines have the same gradient - Students will know how to find the equation of any straight line that is parallel to another given line - Students will know how to find the equation of a particular straight line that is parallel to another given line and passes through a certain coordinate Opportunity for Challenge:	Parallel - parallel lines are two lines that are side by side and have the same distance continuously between them.	- Students will need to know how to calculate gradient - Students will need to know how to solve linear equations in the form $\mathrm{a}+\mathrm{x}=\mathrm{c}$ where a and c are integers or fractions	Mini-Assessment 4

Lesson Objective	Intended Knowledge: Students will know that..	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
	- Students will know how to solve more complex problems involving finding the equation of parallel lines			
To learn how to solve linear simultaneous equations	- Students will know how to solve linear simultaneous equations or find estimates to their solutions given two straight lines drawn on a graph - Students will know how to draw two straight lines to identify the point of intersection to solve two simultaneous equations - Students will know how to use elimination to solve linear simultaneous equations algebraically	Intersection - a point at which two or more things cross Simultaneous - occurring, operating, or done at the same time. Simultaneous equations - equations involving two or more unknowns that are to have the same values in each equation. Linear Equation - an equation between two variables that can be written in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$. Linear equations give a straight line when plotted on a graph.	- Students will need to know how to calculate with negatives	Mini-Assessment 4
To learn how to solve linear simultaneous equations	- Students will know how to use elimination to solve linear simultaneous equations algebraically - Students will know how to solve linear simultaneous equations representing a real-life situation and interpret the solution in the context of the problem		- Students will need to know how to solve linear equations	Mini-Assessment 4
To learn how to draw quadratic graphs	- Students will know how to generate points for a simple quadratic graph without a calculator - Students will know how to use a calculator to generate points for a quadratic graph in the form $y=a x^{2}+b x+c$ where $a=1$ and b and c are any integer including 0 - Students will know how to plot a quadratic graph once they have generated the points - Students will know that the points for a quadratic graph should be joined with a smooth curve - Students will know how to use a calculator to generate points for a quadratic graph in the form $y=a x^{2}+b x+c$ where $a \neq 1$ and b and c are any integer including 0	Quadratic - An expression or equation where the highest power is 2 . Parabola - the U or \cap shape of a quadratic graph	- Students will need to know how to calculate with negative numbers without a calculator - Students will need to know how to square negative numbers without a calculator - Students will need to know how to substitute both positive and negative integers into formulae without a calculator	Mini-Assessment 4
To learn how to draw quadratic graphs and find roots and turning points	- Students will know how to recognise graphs of quadratic functions. - Students will know how to generate points and plot graphs for quadratic functions, with and without a calculator. - Students will know how to identify the line of symmetry of a quadratic graph - Students will know how to find approximate and exact solutions to quadratic equations by identifying the roots of a graph - Students will know how to identify the turning point for a drawn quadratic graph. Opportunity for Challenge: - Students will know how to find approximate and exact solutions to quadratic equations in the form $a x^{2}+b x+c=d$ where d is an integer or decimal number by drawing a suitable horizontal straight line	Quadratic - An expression or equation where the highest power is 2 . Symmetry - A shape or object has symmetry if it can be divided into 2 or more identical pieces. Turning Point - The point at which the gradient changes of a curve (the maximum or minimum point on a curve). Root - A solution to an equation where a line or curve crosses the x-axis. Parabola - the U or \cap shape of a quadratic graph	- Students will need to know how to substitute both positive and negative numbers into equations involving squared terms	Mini-Assessment 4

Lesson Objective	Intended Knowledge: Students will know that...	Tiered Vocabulary	Prior Knowledge: In order to know this, students need to already know that...	Assessment
To learn how to factorise and solve quadratics	- Students will know how to factorise and solve quadratic equations in the form $a x^{2}+b x+c=0$ where $a=1$ - Students will know that in order to factorise and solve quadratic equations they must be equal to zero. - Students will know how to rearrange equations to make them equal to zero before factorising and solving them Opportunity for Challenge: - Students will know how to form and solve quadratic equations where the coefficient of x^{2} is 1	Factorise - put back into brackets by bringing common factors outside Quadratic - involving a squared algebraic term but no other power higher than 2	- Students need to be able to factorise quadratics where the co-efficient of x^{2} is 1	Mini-Assessment 4
To learn how to solve quadratic equations using the quadratic formula	- Students will know that the quadratic formula is $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ - Students will know that we use the quadratic formula when a quadratic cannot be factorised - Students will know how to identify the values for a, b and c from a quadratic equation including where the equation is not necessarily in the order $a x^{2}+b x+c$ - Students will know how to substitute the values for a, b and c into the quadratic formula to solve the corresponding quadratic equation - Students will know that in order to solve quadratic equations they must be equal to zero. - Students will know how to rearrange equations to make them equal to zero before using the quadratic formula to solve them Opportunity for Challenge: - Students will know how to form and solve quadratic equations using the quadratic formula	Formula - A mathematical relationship or rule expressed in symbols.	- Students need to be able to use a calculator efficiently - Students need to be able to substitute numbers into formulae	Mini-Assessment 4

