Knowledge Rich Curriculum Plan

Year 9 Prime - 2D Shapes and Angles

Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that...	Assessment
To learn how to find missing angles on straight lines, around a point, in triangles and quadrilaterals.	- Students will know that angles in a right-angle add upto 90°. - Students will know that angles on a straight line add upto 180°. - Students will know that vertically opposite angles are equal. - Students will know that angles at a point add upto 360°. - Students will know how to use angle facts to find missing angles on straight lines. - Students will know how to use angle facts to find missing angles at a point. - Students will know that angles in a triangle add upto 180°. - Students will know that angles in an equilateral triangle are equal - 60°. - Students will know that two angles in an isosceles triangle are equal. - Students will know how to use angle facts to find the missing angles in triangles. - Students will know how to use angle facts to find missing angles in special triangles. - Students will know that angles in a quadrilateral add upto 360°. - Students will know how to use angle facts to find the missing angles in quadrilaterals	Isosceles Triangle - a triangle with two equal sides and two equal angles Equilateral Triangle - a triangle with three equal sides and three equal, 60° angles Scalene Triangle - a triangle with no equal sides or angles Quadrilateral - a four-sided polygon, having four edges and four corners	- Students need to know how to recognise a 90° angle. - Students need to know how to recognise a straight line. - Students need to know how to recognise a full turn. - Students need to know how to recognise different types of triangles.	Mini-Assessment 6
To learn how to calculate interior and exterior angles in polygons.	- Students will know how to use angles in a triangle add up to 180° to find the angle sums of any polygon. - Students will know that the interior angles of a polygon are the angles inside the polygon. - Students will know how to use the formula $(n-2) \times 180$ to find the sum of interiors angles of any polygon. - Students will know how to find one interior angle of a regular polygon using the formula $(n-2) \times 180$ and dividing by the number of angles of the polygon. - Students will know an exterior angle is the angle between a side of a polygon and an extended adjacent side. - Students will know that the sum of the exterior angles for every polygon is 360°. - Students will know that to dividing 360° by the number of sides will find one exterior angle. - Students will know that interior and exterior angles add up to 180° as they sit on a straight line.	Interior - Inside Polygon - a closed shape with straight sides Regular Polygon - A polygon where all sides are the same length and all angles are equal Irregular Polygon - A polygon where all sides are the same length and all angles are not equal Tesselate - fit together without gaps or overlapping. Exterior - Outside Exterior angle - is the angle between a side of a polygon and an extended adjacent side.	- Students need to know that angles in a triangle add up to 180°. - Students need to recognise different types of polygons. - Students need to know that a regular polygon is a polygon where all angles are the same size and all sides are the same length - Students need to know that an irregular polygon is a polygon that does not have all sides equal and all angles equal.	Mini-Assessment 6
To learn how to solve problems involving angles in polygons.	- Students will know how to find missing angles in irregular polygons by finding the sum of the interior angles and subtracting all known angles. - Students will know how to apply the rules for finding interior and exterior angles to solve problems.		- Students need to know how to find interior and exterior angles of regular polygons.	Mini-Assessment 6
To learn how to find missing angles in parallel lines.	- Students will know that alternate angles are angles that occur on opposite sides of the transversal line and are the same size. - Students will know that alternate angles are equal. - Students will know how to identify alternate angles. - Students will know that corresponding angles occur on the same side of the transversal line and are the same size. - Students will know that corresponding angles are equal. - Students will know how to identify corresponding angles. - Students will know that co-interior angles occur on the same side on the transversal line and are trapped within the parallel lines. - Students will know that co-interior angles add up to 180°. - Students will know how to identify co-interior angles.	Parallel - parallel lines are two lines that are side by side and have the same distance continuously between them Isosceles Triangle - a triangle with two equal sides and two equal angles Corresponding - matching Co-interior Angles - angles that lie between two lines and on the same side of a transversal Transversal - a line that crosses at least two other lines	- Students need to know that parallel lines are a set of lines that are always the same distance apart and never meet. - Students need to use basic angle rules.	Mini-Assessment 6

Lesson/Learning Sequence	Intended Knowledge: Students will know that.	Tiered Vocabulary	Prior Knowledge: In order to know this students, need to already know that...	Assessment
To learn how to find missing angles in parallel lines using a combination of rules.	- Students will know how to use a mixture of parallel line rules to find missing angles.		- Students need to know how to use basic angle rules. - Students need to know how to find angles on parallel lines.	Mini-Assessment 6
To learn how to draw and measure bearings.	- Students will know that a bearing is always measured from North. - Students will know that a bearing is always measured in a clockwise direction. - Students will know that bearings must be written as 3 digits. - Students will know how to use a protractor to accurately draw bearings from A to B and B to A . - Students will know how to use a protractor and ruler to accurately measure bearings on a map, including measuring from A to B and B to A. - Students will know how to measure reflex bearings. Either by measuring the other angle(s) on the point in an anti-clockwise direction and subtracting from 360° or by splitting the reflex bearing into two bearings and adding both measured angles together. - Students will know how to draw reflex bearings. Either by subtracting the bearing from 360°, drawing that bearing in the anti-clockwise or by drawing a straight line of 180°, then using this as a base line to draw the reminder of the bearing. - Students will know how to use bearings to solve problems.	Bearing - angles, measured clockwise from north	- Students need to know how to draw angles. - Students need to know how to measure angles. - Students need to know how to draw lines accurately. - Students need to know how to measure lines accurately.	Mini-Assessment 6
To learn how to construct triangles.	- Students will know how to use a pair of compasses to accurately draw a circle when given the radius. - Students will know how to draw 2D polygons accurately using a protractor and ruler. - Students will know how to construct SAS triangles using a ruler and protractor. - Students will know how to construct ASA triangles using a ruler and protractor. - Students will know how to construct SSS triangles using a ruler and compass.	Construct - In maths, construct means to draw a shape, line or angle accurately using a compass and rule	- Students need to know how to draw straight lines of a certain length using a ruler. - Students need to know how to measure angles using a protractor. - Student need to know that angles in a triangle add upto 180°. - Students need to recognise and know the properties of different 2D shapes. - Students need to know the radius is measured from the centre of a circle to the circumference.	Mini-Assessment 6
To learn how to perpendicular bisectors and angle bisectors.	- Students will know that perpendicular lines are at a 90° to each other. - Students will know that to bisect means to cut into two equal pieces - Students will know how to construct a perpendicular bisector of a line. - Students will know how to construct an angle bisector. - Students will know that the line of an angle bisector is equidistant to the two lines of the angle. - Students will know that the perpendicular distance from a point to a line is the shortest distance to the line. - Students will know how to construct a perpendicular line from a point to a line.	Perpendicular - at a right angle to Bisect - cut into two equal parts Bisector - A line that splits an angle or line into two equal parts	- Students need to know how to use a compass to draw circles. - Students need to know how to draw lines accurately with a ruler. - Students need to know how to measure straight line.	Mini-Assessment 6

- Students will know how to construct a region bounded by a circle. - Students will know how to construct a region bounded by two circles. - Students will know how to construct a given distance from a point. - Students will know how to construct a given distance from a line
- Students will know how to construct equal distances from two points.
- Students will know how to construct equal distances from two-line segments.
- Students will know how to construct regions defined by 'less than', 'nearer to' or 'greater than'.
- Students will know how to use constructions to solve loci problems

Locus (Loci is the plural) - the set of all points (usually forming a curve or surface) satisfying some condition Equidistant - an equal distance
that..

- Students need to know how to draw circles using a
- Students need to know how to find the perpendicular bisector of a line.
- Students need to know how to find the
perpendicular bisector of two point.
- Students need to know how to bisect an angle.
- Students need to know how to construct a perpendicular line from a point to a line.
- Students need to know how to measure lines accurately.
- Students need to know how to draw lines accurately.

