Knowledge Rich Curriculum Plan

Year 9 Support - Measures, 2D Shapes and Angles

Lesson/Learning Sequence	Intended Knowledge: Students will know that...	
To learn how to convert metric units for measures.	-Students will know how to convert units for length including $\mathrm{mm}, \mathrm{cm}, \mathrm{m}$, km -Students will know how to convert units for mass including $\mathrm{mg}, \mathrm{g}, \mathrm{kg}$, tonnes -Students will know how to convert units for volume including ml, cl, I	
To learn how to recognise and identify 2D shapes.	It may be worth splitting this lesson into two.	-Students will know the properties of different 2D shapes and will be able to identify them -Students will be able to identify regular and irregular shapes -Students will know how to recognise and draw the different types of triangle: isosceles, scalene, right-angled, equilateral -Students will know how to name and sketch all types of quadrilaterals and their properties including; square, rectangle, parallelogram, rhombus, kite, trapezium. -Students will know that to accurately tessellate a polygon the shapes must create a pattern of identical shapes which must fit together with no gaps. -Students will know how to identify and label lines of symmetry in 2D shapes. -Students will know that a shape is symmetric if it can be divided into two or more identical pieces that are arranged in an organized fashion. -Students will know how to identify the order of rotational symmetry of any 2D shape by rotating the shape 360' (this can be done with the use of tracing paper).

Convert - change/ swap to

Metric - The metric system is a system of measurement that uses the meter, litre, and gram as base units of length (distance), capacity (volume), and weight (mass) Capacity - the maximum amount that something can contain.
Volume - the amount of space inside a 3D object
Mass - the weight of an object
Polygon - a closed shape with straight sides Regular Polygon - A polygon where all sides are the same length and all angles are equal Irregular Polygon - A polygon where all sides are the same length and all angles are not equal
Isosceles Triangle - a triangle with two equal sides and two equal angles
Equilateral Triangle - a triangle with three equal sides and three equal, 60° angles Scalene Triangle - a triangle with no equal sides or angles
Quadrilateral - a four-sided polygon, having four edges and four corners
Perpendicular - at a right angle to
Parallel - parallel lines are two lines that are side by side and have the same distance continuously between them
Symmetry - the quality of being made up of exactly similar parts facing each other or around an axis.
Rotational symmetry - A shape has rotational symmetry when it can be rotated and it still looks the same
Order of Rotational Symmetry - order of rotational symmetry of a shape is the number of times it can be rotated around a full circle and still look the same
Tesselate - fit together without gaps or overlapping.

In order to know this students, need to already know that

- Students need to know how to multiply and divide by 10, 100 \quad Mini-Assessment 8 and 1,000.
- Students need to be aware of the basic unit measurements of length and distance.
- Students need to be aware of the basic unit measurements of mass and volume.
- Students need to be able to name simple 2D shapes.

To learn how to measure and draw angles.

To learn how to find missing angles on straight lines and around a point

To learn how to find missin

 angles in triangles and quadrilaterals.Students will know that
Students will know how to accurately estimate angles based on their knowledge of the types of angles.

- Students will know how to use a protractor to measure an angle - Students will know how to draw an angle.
- Students will know how to measure reflex angles. Either by measuring the other angle(s) on the point and subtracting from 360° or by splitting the reflex angle into two angles and adding both measured angles together.
Students will know how to draw reflex angles. Either by subtracting the angle from 360°, drawing that angle then mark the reflex angle or by subtracting the reflex angle from 180°, drawing that angle on a straight line and then mark the reflex angle.
- Students will know that angles in a right-angle add upto 90°.
- Students will know that angles on a straight line add upto 180° - Students will know that vertically opposite angles are equal.
- Students will know that angles at a point add upto 360°
- Students will know how to use angle facts to find missing angles on straight lines.
- Students will know how to use angle facts to find missing angles at a point.

- Students will know that angles in a triangle add upto 180°

- Students will know that angles in an equilateral triangle are equal - 60° - Students will know that two angles in an isosceles triangle are equal. - Students will know how to use angle facts to find the missing angles in triangles.
- Students will know how to use angle facts to find missing angles in special triangles.
- Students will know that angles in a quadrilateral add upto 360°
- Students will know how to use angle facts to find the missing angles in quadrilaterals
To learn how to calculate interior and exterior angles in polygons.
${ }^{\circ}{ }^{\circ}{ }^{\circ}$ to find the angle sums of any polygon
- Students will know that the interior angles of a polygon are the angles inside the polygon.
- Students will know how to use the formula $(n-2) \times 180$ to find the sum of interiors angles of any polygon
- Students will know how to find one interior angle of a regular polygon using the formula $(n-2) \times 180$ and dividing by the number of angles of the polygon.
-Students will know an exterior angle is the angle between a side of a polygon and an extended adjacent side.
- Students will know that the sum of the exterior angles for every polygon is 360°.
- Students will know that to dividing 360° by the number of sides will find one exterior angle.

Estimate - roughly calculate or judge the value, number, quantity, or extent of. Acute angle - An angle that is less than 90° Obtuse angle - An angle that is more than 90° but less than 180°
Reflex angle - An angle that is more than 180° but less than 360°
Right angle - An angle that is exactly 90° Protractor - an instrument used for measuring angles

Prior Knowledge:
n order to know this students, need to already know that

- Students need to know how to identify different types of \quad Mini-Assessment 8
- Students need to know that angles are measured in degrees.
- Students need to know how to recognise a 90° angle.
- Students need to know how to recognise a straight line.
- Students need to know how to recognise a full turn.

Isosceles Triangle - a triang

sides and two equal angles
Equilateral Triangle - a triangle with three equal sides and three equal, 60° angles Scalene Triangle - a triangle with no equal sides or angles
Quadrilateral - a four-sided polygon, having four edges and four corners
nterior - Inside
Polygon - a closed shape with straight sides Regular Polygon - A polygon where all sides are the same length and all angles are equa Irregular Polygon - A polygon where all side are the same length and all angles are not equal
Exterior - Outside
Exterior angle - is the angle between a side of a polygon and an extended adjacent side

angles.

- Students need to know how to recognise a 90° angle
- Students need to know how to find missing angles in a straight line, at a point and when they are vertically opposite.
- Students need to know that angles in a triangle add up to 180°

Mini-Assessment 8

- Students need to recognise different types of polygons
- Students need to know that a regular polygon is a polygon where all angles are the same size and all sides are the same length
- Students need to know that an irregular polygon is a polygon that does not have all sides equal and all angles equal.

	Students will know that...		In order to know this students, need to already know that...	
	- Students will know that interior and exterior angles add up to 180° as they sit on a straight line. Opportunity for challenge: - Students will know how to solve basic problems with interior and exterior angles.			
To learn how to find missing angles in parallel lines.	- Students will know that alternate angles are angles that occur on opposite sides of the transversal line and are the same size. - Students will know that alternate angles are equal. - Students will know how to identify alternate angles. - Students will know that corresponding angles occur on the same side of the transversal line and are the same size. - Students will know that corresponding angles are equal. - Students will know how to identify corresponding angles. Opportunity for challenge: - Students will know how to use a combination of rules to find an angle.	Parallel - parallel lines are two lines that are side by side and have the same distance continuously between them Isosceles Triangle - a triangle with two equal sides and two equal angles Corresponding - matching Co-interior Angles - angles that lie between two lines and on the same side of a transversal Transversal - a line that crosses at least two other lines	- Students need to know that parallel lines are a set of lines that are always the same distance apart and never meet. - Students need to use basic angle rules.	Mini-Assessment 8
To learn how to construct triangles.	- Students will know how to use a pair of compasses to accurately draw a circle when given the radius. - Students will know how to draw 2D polygons accurately using a protractor and ruler. - Students will know how to construct SAS triangles using a ruler and protractor. - Students will know how to construct ASA triangles using a ruler and protractor. - Students will know how to construct SSS triangles using a ruler and compass.	Construct - Build or make. In maths, construct means to draw a shape, line or angle accurately using a compass and rule	- Students need to know how to draw straight lines of a certain length using a ruler. - Students need to know how to measure angles using a protractor. - Students need to know the radius is measured from the centre of a circle to the circumference.	Mini-Assessment 8
To learn how to perpendicular bisectors and angle bisectors.	- Students will know that perpendicular lines are at a 90° to each other. - Students will know that to bisect means to cut into two equal pieces - Students will know how to construct a perpendicular bisector of a line. - Students will know how to construct an angle bisector. - Students will know that the line of an angle bisector is equidistant to the two lines of the angle. - Students will know that the perpendicular distance from a point to a line is the shortest distance to the line. - Students will know how to construct a perpendicular line from a point to a line.	Perpendicular - at a right angle to Bisect - cut into two equal parts Bisector - A line that splits an angle or line into two equal parts	- Students need to know how to use a compass to draw circles. - Students need to know how to draw lines accurately with a ruler. - Students need to know how to measure a straight line.	Mini-Assessment 8

