

Knowledge Rich Curriculum Plan

SCIENCE- Physics Year 11

		D: K 1.1	W 1: 6: 05 H	- IV I I
Lesson/Learning	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity
Sequence Lesson:	Students will know that momentum		Using formula from the equation	Tier 2
Momentum		cradents need to an eady when that the anni	sheet	ner z
(HT only)	is defined by the equation:	of mass is kg	Sinest	
(111 01119)	momentum = mass x velocity	Students need to already know that the unit		Tier 3
	p = m v	of velocity is m/s		
	Students will know that the units of	Students need to already know how to convert units		Momentum: a
	momentum are kg m/s			measure of the
	Students will know how to use the			tendency of an
	momentum equation to calculate			object to continue
	momentum, mass and velocity			moving
	 Students will know that in a closed 			
	system, the total momentum			
	before an event is equal to the total			
	momentum after the event			
	Students will know how to describe			
	and explain examples of			
	momentum in an event, such as			
	collisions			
	Students will know how to			
	complete calculations involving an			
	event, such as the collision of two			
	objects (TRIPLE ONLY)			
Acceleration	Students will know that	Students need to already know velocity is a	Use of formula from the equation	Tier 2
7.000.01.00.01.	acceleration is a measure of the	vector quantity	sheet	
	rate of change of velocity	vector quartery		
	Students will know that the unit of			Tier 3
	acceleration is m/s ²			
	Students will know that an object			Acceleration: the
	slowing down is decelerating, and that			rate of change in
	this is negative acceleration			velocity
	 Students will know that acceleration is 			
	calculated using acceleration = change			
	in velocity / time taken			
	Students will know how to calculate			
	acceleration using both the acceleration			
	equation and the uniform acceleration			
	equation found in the data sheet.			

Lesson/Learning	Intended Knowledge:	Prior Knowledge:	Working Scientifically	Tiered Vocabulary
Sequence	Students will know that	In order to know this, students need to already know that		and Reading Activity
Lesson:	 Students will know that the 	Students need to already know that the unit	Use of formula from the equation	Tier 2
Newton's	acceleration of an object is	of force is Newton	sheet	D
second law	proportional to the resultant force	Students need to already know that the unit		Proportional: having a constant ratio with
	acting on an object, and inversely	of mass is kg		another quantity
	proportional to the mass of the			another quantity
	object			Tier 3
	 Students will know that the 			
	equation that links resultant force,			Inertial mass: a
	mass and acceleration is:			measure of how
	Resultant force = mass x			difficult it is to
	acceleration			change the velocity of an object
	F = m a			or an object
	 Students will know that the unit of 			
	acceleration is m/s2			
	Students will know how to explain			
	that inertial mass is a measure of			
	how difficult it is to change the			
	velocity of an object (HT only)			
	Students will know how to use the			
	resultant force equation to			
	calculate force, mass and			
	acceleration			
	Students will know how to estimate			
	the speed, accelerations and forces			
	involved in large accelerations for			
	everyday road transport			
	Students will know how to convert			
	between units			
Lesson:	Students will know that in this	Students need to already know that the	Recording data	Tier 2
Required	investigation the independent	acceleration of an object is proportional to	Interpreting Data	
Practical -	variable is force, the dependent	the resultant force applied on the object	Interpreting Graphs	Tier 3
Newton's	variable is acceleration and the	and inversely proportional to the mass of		
Second Law	control variables are mass and the	the object.		
	amount of friction			
	Students will know how to			
	investigate the effect of increasing			
	force on the motion of an object			
	Students will know how to			
	investigate the effect of varying the			
	mass of an object on the			

Lesson/Learning Sequence	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity
Lesson: Forces in	acceleration of an object produced by a constant force • Students will know that when a	Students need to already know that the unit	Interpreting Data	Tier 2
Collisions	force acts on an object that is moving, or able to move, a change in momentum occurs • Students will know that the equation linking force and change in momentum is: Force = change in momentum ÷ time taken • Students will know that car safety features, such as airbags, seat belts and crumple zones, reduce force by increasing the time taken for a change in momentum • Students will know how to explain how further safety equipment, such as crash mats and cycle helmets, reduce the force felt TRIPLE ONLY: Students will know how to complete calculations involving the change in	of mass is kg • Students need to already know that the unit of velocity is m/s Students need to already know how to convert units		Tier 3
Lesson: Equations of Motion	Students will know the symbols and units for acceleration, initial velocity, final velocity and distance Students will know how to apply the equation for constant acceleration Students will know that dangers of large deceleration include skidding, brake over-heating, increased forces felt by drivers and passengers	Students need to already know that the units of acceleration are m/s²	Use of formula from the equation sheet	

Lesson/Learning Sequence	Intended Knowledge: Students will know that	Prior Knowledge: In order to know this, students need to already know that	Working Scientifically	Tiered Vocabulary and Reading Activity
Lesson: Newton's Third Law	Students will know that whenever two objects interact, the forces they exert on each other are equal and opposite Students will know how to apply Newton's Third Law to examples of equilibrium situations	Students will already know that forces at equilibrium have a resultant force of ON.		Tier 2 Tier 3 Equilibrium: when two opposing forces are balanced and cancelling each other out