Curriculum Overview – Year 13 A Level

In A Level maths, we follow the Edexcel A Level course with students sitting three external papers at the end of Year 13 (two pure papers and one statistics/mechanics paper). Students will build on knowledge gained throughout year 12 and learn new topics using their mathematical skills. The content will be split between two teachers. Each teacher will teach different topics. A Level maths is a very challenging course. Class teachers use the PLCs from each tracking cycle to inform their planning and to assess areas for improvement within their class. This informs the tasks set for homework and the topics covered in Boost and Secure over the course of the year. The end of the academic year focuses entirely on revising key topics identified in the last round of tracking in the build up to the A Level exams.

Unit Title	Learning
Half Term 1:	In algebraic methods students will learn how to:
1) Algebraic methods	Use proof by contradiction to prove true statements
2) Functions and graphs	Multiple and divide two or more algebraic fractions
3) Sequences and series	 Add or subtract two or more algebraic fractions
4) Binomial expansion	 Convert an expression with linear factors in the denominator into partial fractions
	 Convert an expression with repeated linear factors in the denominator into partial fractions
	Divide algebraic expressions
	Convert an improper fraction into partial fractions
	 In the functions and graphs students will learn how to: Understand and use the modulus function Understand mappings and functions, and use domain and range Combine two or more functions to make a composite function Know how to find the inverse of a function graphically and algebraically Sketch the graphs of the modulus functions Apply a combination of two (or more) transformation to the same curve Transform the modulus function

	 Understand the definitions of secant, cosecant and cotangent and their relationship with to cosine, sine and tangent
	 Understand the graphs of secant, cosecant and cotangent and their domain and range
	 Simplify expressions, prove simple identities and solve equations involving secant, cosecant and cotangent
	 Prove and use trigonometric identities
	Understand and use inverse trigonometric functions and their domain and ranges
	In trigonometry and modelling students will learn how to:
	Prove and use the addition formula
	 Understand and use the double-angle formulae
	 Solve trigonometric equations using the double-angle and addition formulae
	 Prove trigonometric identities using a variety of identities
	Use trigonometric functions to model real-life situations
	In parametric equations students will learn how to:
	 Convert parametric equations into Cartesian form by substitution
	 Convert parametric equations into Cartesian form using trigonometric identities
	 Understand and use parametric equations of curves and sketch parametric curves
	 Solve coordinate geometry problems involving parametric equations
	 Use parametric equations in modelling in a variety of contexts
Half Term 3:	In differentiation students will learn how to:
1) Differentiation	Differentiate simple trigonometric functions
2) Numerical methods	 Differentiate exponentials and logarithms
3) Integration	 Differentiate functions using the chain, product and quotient rules
4) Vectors	Differentiate more complex trigonometric functions
	Differentiate parametric equations

The Sutton Academy

 Differentiate functions which are defined implicitly
 Use the second derivative to describe the behaviour of a function
 Solve problems involving connected rates of change and construct simple differential equations
In numerical methods students will learn how to:
 Locate roots of f(x) = 0 by considering changes of sign
 Use iteration to find an approximation to the root of the equation f(x) = 0
• Use the Newton-Raphson procedure to find approximations to the solutions of equations of the form f(x) = 0
 Use numerical methods to solve problems in context
In integration students will learn how to:
 Integrate standard mathematical functions including trigonometric and exponential functions and use the
reverse of the chain rule to integrate functions of the form $f(ax + b)$
 Use trigonometric identities in integration
 Use the reverse of the chain rule to integrate more complex functions
 Use the reverse of the chain rule to integrate more complex functions Integrate functions by making a substitution, using integration by parts and using partial fractions
 Integrate functions by making a substitution, using integration by parts and using partial mactions Use integration to find the area under a surve
• Use the transmission rule to encrossimete the error under a curve
• Ose the trapezium rule to approximate the area under a curve
 Solve simple differential equations and model real-life situations with differential equations
In vectors students will learn how to:
Understand 3D Cartesian coordinates
Use vectors in three dimensions
Use vectors to solve geometric problems
Model 3D motion in mechanics with vectors

Half Term 4:

- 1) Regression, correlation and hypothesis testing
- 2) Conditional probability
- 3) The normal distribution
- 4) Moments
- 5) Forces and friction
- 6) Projectiles
- 7) Applications of forces
- 8) Further kinematics

Regression, correlation and hypothesis testing is the first topic in statistics. In regression, correlation and hypothesis testing students will learn how to:

- Use exponential models in bivariate data
 - Use a change of variable to estimate coefficients in an exponential model
 - Calculate the product moment correlation coefficient
 - Carry out a hypothesis test for zero correlation

In conditional probability students will learn how to:

- Use set notation in probability
- Use conditional probability
- Solve conditional probability problems using two-way tables and Venn diagrams
- Use probability formulae to solve problems
- Solve conditional probability using tree diagrams

Normal distribution is the last statistics topic. In normal distribution students will learn how to:

- Understand the normal distribution and the characteristics of a normal distribution curve
- Find percentage points on a standard normal curve
- Calculate values on a standard normal curve
- Find unknown means and/or standard deviations for a normal distribution
- Approximate a binomial distribution using a normal distribution
- Select appropriate distributions and solve real-life problems in context
- Carry out a hypothesis test for the mean of a normal distribution

Moments is the first mechanics topic. In moments students will learn how to:

- Calculate the turning effect of a force applied to a rigid body
- Calculate the resultant moment of a set of forces acting on a rigid body

Solve problems involving uniform rods in equilibrium
 Solve problems involving non-uniform rods
 Solve problems involving rods on the point of tilting
In forces and friction students will learn how to:
Resolve forces into components
Use the triangle law to find a resultant force
 Solve problems involving smooth or rough inclined planes
 Understand friction and the coefficient of friction
• Ose $F \leq \mu R$
In projectiles students will learn how to:
 Model motion under gravity for an object projected horizontally
Resolve velocity into components
 Solve problems involving particles projected at an angle
• Derive the formulae for time of flight, range and greatest height, and the equation of the path of a projectile
In applications of forces students will learn how to:
• Find an unknown force when a system is in equilibrium
 Solve statics problems involving weight tension and pulleys
 Understand and solve problems involving limiting equilibrium
 Solve problems involving motion on rough or smooth inclined planes
 Solve problems involving motion of rough of smooth member planes Solve problems involving connected particles that require the resolution of forces
• Solve problems involving connected particles that require the resolution of forces
Further Kinematics is the last topic in mechanics. In further kinematics students will learn how to:
Work with vectors for displacement, velocity and acceleration when using the vector equations of motion

• Use calculus with harder functions of time involving variable acceleration
--

• Differentiate and integrate vectors with respect to time

How can parents best support? (please can this paragraph just be put at the end – it doesn't vary for each topic)

Parents can best support their students during their time studying KS5 maths by encouraging them to complete all homework set. Students will be given a 'Personal Learning Checklist' after every round of tracking exams that they sit. These highlight key topics that your child needs to work on based on their exam. Encouraging your child to use Hegarty maths, revision websites, YouTube, revision guides to study (these will be provided) and revise topics at home will greatly benefit them. Where possible if you could purchase a scientific calculator for your child, this will help enable them to familiarise themselves with using their own calculator, enable them to answer questions in the calculator exam booklets and revise properly.