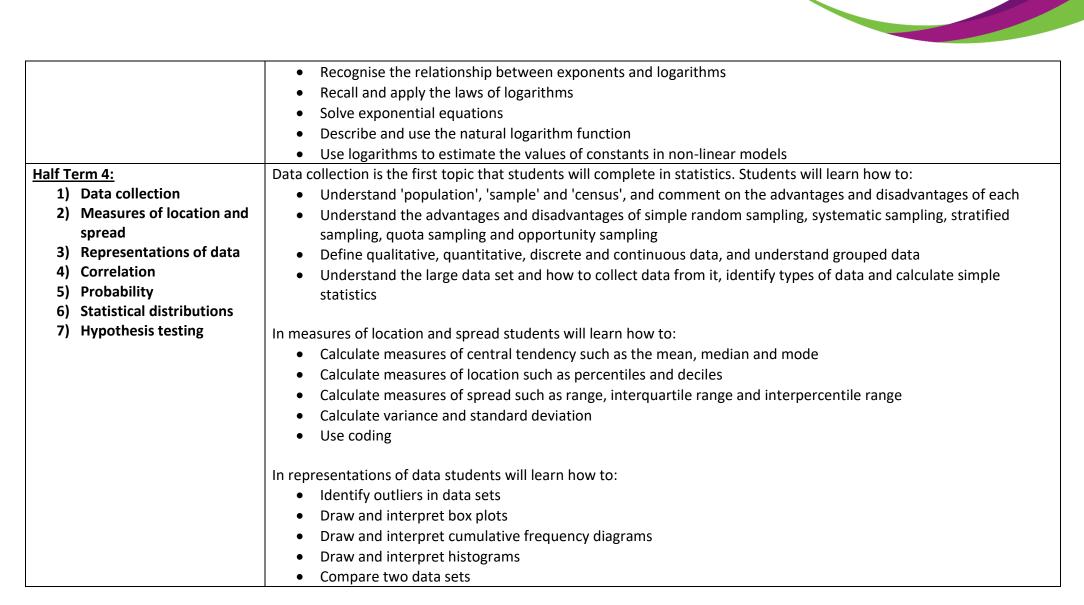
Curriculum Overview – Year 12 A Level

In A Level maths, we follow the Edexcel A Level course with students sitting two internal papers at the end of Year 12 (one pure paper and one statistics/mechanics paper). The start of year 12 will focus on topics learnt at GCSE. This gives students the opportunity to recap and consolidate skills they will need throughout the whole A Level course. Over time, students will start to either build on previous knowledge or learn completely new content. The content will be split between two teachers. Each teacher will teach different topics. A Level maths is a very challenging course. Class teachers use the PLCs from each tracking cycle to inform their planning and to assess areas for improvement within their class. This informs the tasks set for homework and the topics covered in Boost and Secure over the course of the year. The end of the academic year focuses entirely on revising key topics identified in the last round of tracking in the build up to the As level exams.

Unit Title	Learning
Half Term 1:1) Algebraic expressions2) Quadratics3) Equations and inequalities4) Graphs and transformations5) Equations of straight lines6) Circles	 In algebraic expressions students will learn how to: Multiply and divide integer powers Expand a single term over brackets and collect like terms Expand the product of two or three expressions Factorise linear, quadratic and simple cubic expressions Use the laws of indices Simplify and use the rules of surds Rationalise denominators
	 In quadratics students will learn how to : Solve quadratic equations using factorisation, the quadratic formula and completing the square Read and use f(x) notation when working with functions Sketch the graphs and find the turning point of a quadratic function Find and interpret the discriminant of a quadratic expression Use and apply model that involve quadratic functions

Solve linear simultaneous equations using elimination or substitution
 Solve simultaneous equations: one linear and one quadratic
Interpret algebraic solutions of equations graphically
Solve linear inequalities
Solve quadratic inequalities
Interpret inequalities graphically
Represent linear and quadratic inequalities graphically
In graphs and transformations students will learn how to:
Sketch cubic graphs
Sketch quartic graphs
Sketch reciprocal graphs
Use intersection points of graphs to solve equations
Translate graphs
Sketch graphs
Transform graphs of unfamiliar functions
In straight line graphs students will learn how to:
Calculate the gradient of a line joining a pair of points
 Understand the link between the equation of a line, and its gradient and intercept Find the equation of a line given the gradient and lene gradient on the line.
 Find the equation of a line given the gradient and one point on the line or two points on the line
Find the point of intersection for a pair of straight lines
Use the rules for parallel and perpendicular gradients
Solve length and area problems on coordinate grids
 Use straight line graphs to construct mathematical models

	 In circles students will learn how to: Find the midpoint of a line segment Find the equation of the perpendicular bisector to a line segment Find the equation of a circle Solve geometric problems involving straight lines and circles Use circle properties to solve problems on coordinate grids Find the angle in a semicircle and solve other problems involving circles and triangles
Half Term 2:1) Algebraic methods2) The binomial expansion3) Trigonometric ratios4) Trigonometric identities and equations5) Vectors	 In algebraic methods students will learn how to: Cancel factors in algebraic fractions Divide a polynomial by a linear expression Use the factor theorem to factorise a cubic expression Construct mathematical proofs using algebra Use proof by exhaustion and disproof by counter-example
5) Vectors	 In the binomial expansion students will learn how to: Use Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions Use combinations and factorial notation Use the binomial expansion to expand brackets Find individual coefficients in a binomial expansion Make approximation using the binomial expansion
	 In trigonometric ratios students will learn: Use the cosine rule to find a missing side or angle


The Sutton Academy

 Use the sine rule to find a missing side or angle
 Find the area of a triangle using an appropriate formula
 Solve problems involving triangles
 Sketch the graphs of the sine, cosine and tangent functions
Sketch simple transformations of these graphs
In trigonometric identities and equations students will learn how to:
 Calculate the sine, cosine and tangent of any angle
 Find the exact trigonometric ratios for 30°, 45° and 60°
 Use the relationships and identities for tan, sin and cos
Solve simple trigonometric equations
 Solve more complicated trigonometric equations
 Solve trigonometric equations that produce quadratics
Vectors is the last pure topic student will learn in year 12. In vectors students will learn how to:
Use vectors in two dimensions
 Use column vectors and carry out arithmetic operations on vectors
 Calculate the magnitude and direction of a vector
 Understand and use position vectors
Use vectors to solve geometric problems
 Understand vector magnitude and use vectors in speed and distance calculations
Use vectors to solve problems in context

Half Term 3:	In differentiation students will learn how to:
1) Differentiation	 Find the gradient at a particular point on a curve
2) Integration	Find the derivative from first principles
3) Exponentials and	Find the derivative of a simple function
logarithms	Find the derivative of a quadratic function
	 Find the derivative of a function with two or more terms
	 Use the derivative to solve problems involving gradients, tangents and normal
	Identify increasing and decreasing functions
	Find the second order derivative of a simple function
	 Find stationary points of functions and determine their nature
	 Sketch the gradient function of a given function
	Model real-life situations with differentiation
	In integration students will learn how to:
	Find the integral of simple functions
	Integrate polynomials
	 Find f(x), given f'(x) and a point on the curve
	Evaluate a definite integral
	Find the area bounded by a curve
	• Find the area bounded by the x-axis
	Find areas bounded by curves and straight lines
	In exponentials and logarithms students will learn how to:
	 Sketch exponential graphs and transformations of these graphs
	 Differentiate exponentials and understand why this result is important
	 Use and interpret models that use exponential functions

The Sutton Academy

Half Term		Modelling in mechanics is the first topic that students will complete in mechanics. Students will learn how to:
-	odelling in mechanics	 Apply the concept of a mathematical model to mechanics
•	onstant acceleration	 Apply some of the common assumptions used in mechanical models
•	rces and motion	 Know SI units for quantities and derived quantities used in mechanics
4) Va	ariable acceleration	Know the difference between scalar and vector quantities
		In constant acceleration students will learn how to:
		 Use and interpret displacement-time graphs
		Use and interpret velocity-time graphs
		 Derive the constant acceleration formulae and use them to solve problems
		Use the constant acceleration formulae to solve problems involving vertical motion under gravity
		In forces and motion students will learn how to:
		Draw force diagrams and calculate resultant forces
		Understand and use Newton's first law
		Calculate resultant forces by adding vectors
		 Understand and use Newton's second law, F=ma
		 Apply Newton's second law to vector forces and acceleration
		 Understand and use Newton's third law
		Solve problems involving connected particles
		Variable acceleration is the last topic in mechanics for year 12. Students will learn how to:
		 Understand that displacement, velocity and acceleration may be given as functions of time
		Use differentiation to solve kinematics problems
		 Use calculus to solve problems involving maxima and minima
		Use integration to solve kinematics problems

•	Use calculus to derive constant acceleration formulae

How can parents best support? (please can this paragraph just be put at the end – it doesn't vary for each topic)

Parents can best support their students during their time studying KS5 maths by encouraging them to complete all homework set. Students will be given a 'Personal Learning Checklist' after every round of tracking exams that they sit. These highlight key topics that your child needs to work on based on their exam. Encouraging your child to use Hegarty maths, revision websites, YouTube, revision guides to study (these will be provided) and revise topics at home will greatly benefit them. Where possible if you could purchase a scientific calculator for your child, this will help enable them to familiarise themselves with using their own calculator, enable them to answer questions in the calculator exam booklets and revise properly.